Back to index

4.12.13

Jump to: Complete Features | Incomplete Features | Complete Epics | Incomplete Epics | Other Complete | Other Incomplete |

Changes from 4.11.54

Note: this page shows the Feature-Based Change Log for a release

Complete Features

These features were completed when this image was assembled

1. Proposed title of this feature request
Add runbook_url to alerts in the OCP UI

2. What is the nature and description of the request?
If an alert includes a runbook_url label, then it should appear in the UI for the alert as a link.

3. Why does the customer need this? (List the business requirements here)
Customer can easily reach the alert runbook and be able to address their issues.

4. List any affected packages or components.

Epic Goal

  • Make it possible to disable the console operator at install time, while still having a supported+upgradeable cluster.

Why is this important?

  • It's possible to disable console itself using spec.managementState in the console operator config. There is no way to remove the console operator, though. For clusters where an admin wants to completely remove console, we should give the option to disable the console operator as well.

Scenarios

  1. I'm an administrator who wants to minimize my OpenShift cluster footprint and who does not want the console installed on my cluster

Acceptance Criteria

  • It is possible at install time to opt-out of having the console operator installed. Once the cluster comes up, the console operator is not running.

Dependencies (internal and external)

  1. Composable cluster installation

Previous Work (Optional):

  1. https://docs.google.com/document/d/1srswUYYHIbKT5PAC5ZuVos9T2rBnf7k0F1WV2zKUTrA/edit#heading=h.mduog8qznwz
  2. https://docs.google.com/presentation/d/1U2zYAyrNGBooGBuyQME8Xn905RvOPbVv3XFw3stddZw/edit#slide=id.g10555cc0639_0_7

Open questions::

  1. The console operator manages the downloads deployment as well. Do we disable the downloads deployment? Long term we want to move to CLI manager: https://github.com/openshift/enhancements/blob/6ae78842d4a87593c63274e02ac7a33cc7f296c3/enhancements/oc/cli-manager.md

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

In the console-operator repo we need to add `capability.openshift.io/console` annotation to all the manifests that the operator either contains creates on the fly.

 

Manifests are currently present in /bindata and /manifest directories.

 

Here is example of the insights-operator change.

Here is the overall enhancement doc.

 

Feature Overview
Provide CSI drivers to replace all the intree cloud provider drivers we currently have. These drivers will probably be released as tech preview versions first before being promoted to GA.

Goals

  • Framework for rapid creation of CSI drivers for our cloud providers
  • CSI driver for AWS EBS
  • CSI driver for AWS EFS
  • CSI driver for GCP
  • CSI driver for Azure
  • CSI driver for VMware vSphere
  • CSI Driver for Azure Stack
  • CSI Driver for Alicloud
  • CSI Driver for IBM Cloud

Requirements

Requirement Notes isMvp?
Framework for CSI driver  TBD Yes
Drivers should be available to install both in disconnected and connected mode   Yes
Drivers should upgrade from release to release without any impact   Yes
Drivers should be installable via CVO (when in-tree plugin exists)    

Out of Scope

This work will only cover the drivers themselves, it will not include

  • enhancements to the CSI API framework
  • the migration to said drivers from the the intree drivers
  • work for non-cloud provider storage drivers (FC-SAN, iSCSI) being converted to CSI drivers

Background, and strategic fit
In a future Kubernetes release (currently 1.21) intree cloud provider drivers will be deprecated and replaced with CSI equivalents, we need the drivers created so that we continue to support the ecosystems in an appropriate way.

Assumptions

  • Storage SIG won't move out the changeover to a later Kubernetes release

Customer Considerations
Customers will need to be able to use the storage they want.

Documentation Considerations

  • Target audience: cluster admins
  • Updated content: update storage docs to show how to use these drivers (also better expose the capabilities)

This Epic is to track the GA of this feature

Goal

  • Make available the Google Cloud File Service via a CSI driver, it is desirable that this implementation has dynamic provisioning
  • Without GCP filestore support, we are limited to block / RWO only (GCP PD 4.8 GA)
  • Align with what we support on other major public cloud providers.

Why is this important?

  • There is a know storage gap with google cloud where only block is supported
  • More customers deploying on GCE and asking for file / RWX storage.

Scenarios

  1. Install the CSI driver
  2. Remove the CSI Driver
  3. Dynamically provision a CSI Google File PV*
  4. Utilise a Google File PV
  5. Assess optional features such as resize & snapshot

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Customers::

  • Telefonica Spain
  • Deutsche Bank

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

As an OCP user, I want images for GCP Filestore CSI Driver and Operator, so that I can install them on my cluster and utilize GCP Filestore shares.

We need to continue to maintain specific areas within storage, this is to capture that effort and track it across releases.

Goals

  • To allow OCP users and cluster admins to detect problems early and with as little interaction with Red Hat as possible.
  • When Red Hat is involved, make sure we have all the information we need from the customer, i.e. in metrics / telemetry / must-gather.
  • Reduce storage test flakiness so we can spot real bugs in our CI.

Requirements

Requirement Notes isMvp?
Telemetry   No
Certification   No
API metrics   No
     

Out of Scope

n/a

Background, and strategic fit
With the expected scale of our customer base, we want to keep load of customer tickets / BZs low

Assumptions

Customer Considerations

Documentation Considerations

  • Target audience: internal
  • Updated content: none at this time.

Notes

In progress:

  • CI flakes:
    • Configurable timeouts for e2e tests
      • Azure is slow and times out often
      • Cinder times out formatting volumes
      • AWS resize test times out

 

High prio:

  • Env. check tool for VMware - users often mis-configure permissions there and blame OpenShift. If we had a tool they could run, it might report better errors.
    • Should it be part of the installer?
    • Spike exists
  • Add / use cloud API call metrics
    • Helps customers to understand why things are slow
    • Helps build cop to understand a flake
      • With a post-install step that filters data from Prometheus that’s still running in the CI job.
    • Ideas:
      • Cloud is throttling X% of API calls longer than Y seconds
      • Attach / detach / provisioning / deletion / mount / unmount / resize takes longer than X seconds?
    • Capture metrics of operations that are stuck and won’t finish.
      • Sweep operation map from executioner???
      • Report operation metric into the highest bucket after the bucket threshold (i.e. if 10minutes is the last bucket, report an operation into this bucket after 10 minutes and don’t wait for its completion)?
      • Ask the monitoring team?
    • Include in CSI drivers too.
      • With alerts too

Unsorted

  • As the number of storage operators grows, it would be grafana board for storage operators
    • CSI driver metrics (from CSI sidecars + the driver itself  + its operator?)
    • CSI migration?
  • Get aggregated logs in cluster
    • They're rotated too soon
    • No logs from dead / restarted pods
    • No tools to combine logs from multiple pods (e.g. 3 controller managers)
  • What storage issues customers have? it was 22% of all issues.
    • Insufficient docs?
    • Probably garbage
  • Document basic storage troubleshooting for our supports
    • What logs are useful when, what log level to use
    • This has been discussed during the GSS weekly team meeting; however, it would be beneficial to have this documented.
  • Common vSphere errors, their debugging and fixing. 
  • Document sig-storage flake handling - not all failed [sig-storage] tests are ours
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

The End of General support for vSphere 6.7 will be on October 15, 2022. So, vSphere 6.7 will be deprecated for 4.11.

We want to encourage vSphere customers to upgrade to vSphere 7 in OCP 4.11 since VMware is EOLing (general support) for vSphere 6.7 in Oct 2022.

We want the cluster Upgradeable=false + have a strong alert pointing to our docs / requirements.

related slack: https://coreos.slack.com/archives/CH06KMDRV/p1647541493096729

Epic Goal

  • Update all images that we ship with OpenShift to the latest upstream releases and libraries.
  • Exact content of what needs to be updated will be determined as new images are released upstream, which is not known at the beginning of OCP development work. We don't know what new features will be included and should be tested and documented. Especially new CSI drivers releases may bring new, currently unknown features. We expect that the amount of work will be roughly the same as in the previous releases. Of course, QE or docs can reject an update if it's too close to deadline and/or looks too big.

Traditionally we did these updates as bugfixes, because we did them after the feature freeze (FF). Trying no-feature-freeze in 4.12. We will try to do as much as we can before FF, but we're quite sure something will slip past FF as usual.

Why is this important?

  • We want to ship the latest software that contains new features and bugfixes.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

(Using separate cards for each driver because these updates can be more complicated)

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

(Using separate cards for each driver because these updates can be more complicated)

Update all OCP and kubernetes libraries in storage operators to the appropriate version for OCP release.

This includes (but is not limited to):

  • Kubernetes:
    • client-go
    • controller-runtime
  • OCP:
    • library-go
    • openshift/api
    • openshift/client-go
    • operator-sdk

Operators:

  • aws-ebs-csi-driver-operator 
  • aws-efs-csi-driver-operator
  • azure-disk-csi-driver-operator
  • azure-file-csi-driver-operator
  • openstack-cinder-csi-driver-operator
  • gcp-pd-csi-driver-operator
  • gcp-filestore-csi-driver-operator
  • manila-csi-driver-operator
  • ovirt-csi-driver-operator
  • vmware-vsphere-csi-driver-operator
  • alibaba-disk-csi-driver-operator
  • ibm-vpc-block-csi-driver-operator
  • csi-driver-shared-resource-operator

 

  • cluster-storage-operator
  • csi-snapshot-controller-operator
  • local-storage-operator
  • vsphere-problem-detector

There is a new driver release 5.0.0 since the last rebase that includes snapshot support:

https://github.com/kubernetes-sigs/ibm-vpc-block-csi-driver/releases/tag/v5.0.0

Rebase the driver on v5.0.0 and update the deployments in ibm-vpc-block-csi-driver-operator.
There are no corresponding changes in ibm-vpc-node-label-updater since the last rebase.

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

(Using separate cards for each driver because these updates can be more complicated)

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

(Using separate cards for each driver because these updates can be more complicated)

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

This includes ibm-vpc-node-label-updater!

(Using separate cards for each driver because these updates can be more complicated)

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

(Using separate cards for each driver because these updates can be more complicated)

Epic Goal

  • Enable the migration from a storage intree driver to a CSI based driver with minimal impact to the end user, applications and cluster
  • These migrations would include, but are not limited to:
    • CSI driver for AWS EBS
    • CSI driver for GCP
    • CSI driver for Azure (file and disk)
    • CSI driver for VMware vSphere

Why is this important?

  • OpenShift needs to maintain it's ability to enable PVCs and PVs of the main storage types
  • CSI Migration is getting close to GA, we need to have the feature fully tested and enabled in OpenShift
  • Upstream intree drivers are being deprecated to make way for the CSI drivers prior to intree driver removal

Scenarios

  1. User initiated move to from intree to CSI driver
  2. Upgrade initiated move from intree to CSI driver
  3. Upgrade from EUS to EUS

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

On new installations, we should make the StorageClass created by the CSI operator the default one. 

However, we shouldn't do that on an upgrade scenario. The main reason is that users might have set  a different quota on the CSI driver Storage Class.

Exit criteria:

  • New clusters get the CSI Storage Class as the default one.
  • Existing clusters don't get their default Storage Classes changed.

This Epic tracks the GA of this feature

Epic Goal

Why is this important?

  • OpenShift needs to maintain it's ability to enable PVCs and PVs of the main storage types
  • CSI Migration is getting close to GA, we need to have the feature fully tested and enabled in OpenShift
  • Upstream intree drivers are being deprecated to make way for the CSI drivers prior to intree driver removal

Scenarios

  1. User initiated move to from intree to CSI driver
  2. Upgrade initiated move from intree to CSI driver
  3. Upgrade from EUS to EUS

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

On new installations, we should make the StorageClass created by the CSI operator the default one. 

However, we shouldn't do that on an upgrade scenario. The main reason is that users might have set  a different quota on the CSI driver Storage Class.

Exit criteria:

  • New clusters get the CSI Storage Class as the default one.
  • Existing clusters don't get their default Storage Classes changed.

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Rebase OpenShift components to k8s v1.24

Why is this important?

  • Rebasing ensures components work with the upcoming release of Kubernetes
  • Address tech debt related to upstream deprecations and removals.

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. k8s 1.24 release

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Feature Overview

  • As an infrastructure owner, I want a repeatable method to quickly deploy the initial OpenShift cluster.
  • As an infrastructure owner, I want to install the first (management, hub, “cluster 0”) cluster to manage other (standalone, hub, spoke, hub of hubs) clusters.

Goals

  • Enable customers and partners to successfully deploy a single “first” cluster in disconnected, on-premises settings

Requirements

4.11 MVP Requirements

  • Customers and partners needs to be able to download the installer
  • Enable customers and partners to deploy a single “first” cluster (cluster 0) using single node, compact, or highly available topologies in disconnected, on-premises settings
  • Installer must support advanced network settings such as static IP assignments, VLANs and NIC bonding for on-premises metal use cases, as well as DHCP and PXE provisioning environments.
  • Installer needs to support automation, including integration with third-party deployment tools, as well as user-driven deployments.
  • In the MVP automation has higher priority than interactive, user-driven deployments.
  • For bare metal deployments, we cannot assume that users will provide us the credentials to manage hosts via their BMCs.
  • Installer should prioritize support for platforms None, baremetal, and VMware.
  • The installer will focus on a single version of OpenShift, and a different build artifact will be produced for each different version.
  • The installer must not depend on a connected registry; however, the installer can optionally use a previously mirrored registry within the disconnected environment.

Use Cases

  • As a Telco partner engineer (Site Engineer, Specialist, Field Engineer), I want to deploy an OpenShift cluster in production with limited or no additional hardware and don’t intend to deploy more OpenShift clusters [Isolated edge experience].
  • As a Enterprise infrastructure owner, I want to manage the lifecycle of multiple clusters in 1 or more sites by first installing the first  (management, hub, “cluster 0”) cluster to manage other (standalone, hub, spoke, hub of hubs) clusters [Cluster before your cluster].
  • As a Partner, I want to package OpenShift for large scale and/or distributed topology with my own software and/or hardware solution.
  • As a large enterprise customer or Service Provider, I want to install a “HyperShift Tugboat” OpenShift cluster in order to offer a hosted OpenShift control plane at scale to my consumers (DevOps Engineers, tenants) that allows for fleet-level provisioning for low CAPEX and OPEX, much like AKS or GKE [Hypershift].
  • As a new, novice to intermediate user (Enterprise Admin/Consumer, Telco Partner integrator, RH Solution Architect), I want to quickly deploy a small OpenShift cluster for Poc/Demo/Research purposes.

Questions to answer…

  •  

Out of Scope

Out of scope use cases (that are part of the Kubeframe/factory project):

  • As a Partner (OEMs, ISVs), I want to install and pre-configure OpenShift with my hardware/software in my disconnected factory, while allowing further (minimal) reconfiguration of a subset of capabilities later at a different site by different set of users (end customer) [Embedded OpenShift].
  • As an Infrastructure Admin at an Enterprise customer with multiple remote sites, I want to pre-provision OpenShift centrally prior to shipping and activating the clusters in remote sites.

Background, and strategic fit

  • This Section: What does the person writing code, testing, documenting need to know? What context can be provided to frame this feature.

Assumptions

  1. The user has only access to the target nodes that will form the cluster and will boot them with the image presented locally via a USB stick. This scenario is common in sites with restricted access such as government infra where only users with security clearance can interact with the installation, where software is allowed to enter in the premises (in a USB, DVD, SD card, etc.) but never allowed to come back out. Users can't enter supporting devices such as laptops or phones.
  2. The user has access to the target nodes remotely to their BMCs (e.g. iDrac, iLo) and can map an image as virtual media from their computer. This scenario is common in data centers where the customer provides network access to the BMCs of the target nodes.
  3. We cannot assume that we will have access to a computer to run an installer or installer helper software.

Customer Considerations

  • ...

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

 

References

 

 

Epic Goal

As a OpenShift infrastructure owner, I want to deploy OpenShift clusters with dual-stack IPv4/IPv6

As a OpenShift infrastructure owner, I want to deploy OpenShift clusters with single-stack IPv6

Why is this important?

IPv6 and dual-stack clusters are requested often by customers, especially from Telco customers. Working with dual-stack clusters is a requirement for many but also a transition into a single-stack IPv6 clusters, which for some of our users is the final destination.

Acceptance Criteria

  • Agent-based installer can deploy IPv6 clusters
  • Agent-based installer can deploy dual-stack clusters
  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Previous Work

Karim's work proving how agent-based can deploy IPv6: IPv6 deploy with agent based installer]

Done Checklist * CI - CI is running, tests are automated and merged.

  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>|

For dual-stack installations the agent-cluster-install.yaml must have both an IPv4 and IPv6 subnet in the networkking.MachineNetwork or assisted-service will throw an error. This field is in InstallConfig but it must be added to agent-cluster-install in its Generate().

For IPv4 and IPv6 installs, setting up the MachineNetwork is not needed but it also does not cause problems if its set, so it should be fine to set it all times.

Epic Goal

As an OpenShift infrastructure owner, I want to deploy a cluster zero with RHACM or MCE and have the required components installed when the installation is completed

Why is this important?

BILLI makes it easier to deploy a cluster zero. BILLI users know at installation time what the purpose of their cluster is when they plan the installation. Day-2 steps are necessary to install operators and users, especially when automating installations, want to finish the installation flow when their required components are installed.

Acceptance Criteria

  • A user can provide MCE manifests and have it installed without additional manual steps after the installation is completed
  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story:

As a customer, I want to be able to:

  • Install MCE with the agent-installer

so that I can achieve

  • create an MCE hub with my openshift install

Acceptance Criteria:

Description of criteria:

  • Upstream documentation including examples of the extra manifests needed
  • Unit tests that include MCE extra manifests
  • Ability to install MCE using agent-installer is tested
  • Point 3

(optional) Out of Scope:

We are only allowing the user to provide extra manifests to install MCE at this time. We are not adding an option to "install mce" on the command line (or UI)

Engineering Details:

This requires/does not require a design proposal.
This requires/does not require a feature gate.

User Story:

As a customer, I want to be able to:

  • Install MCE with the agent-installer

so that I can achieve

  • create an MCE hub with my openshift install

Acceptance Criteria:

Description of criteria:

  • Upstream documentation including examples of the extra manifests needed
  • Unit tests that include MCE extra manifests
  • Ability to install MCE using agent-installer is tested
  • Point 3

(optional) Out of Scope:

We are only allowing the user to provide extra manifests to install MCE at this time. We are not adding an option to "install mce" on the command line (or UI)

Engineering Details:

This requires/does not require a design proposal.
This requires/does not require a feature gate.

Set the ClusterDeployment CRD to deploy OpenShift in FIPS mode and make sure that after deployment the cluster is set in that mode

In order to install FIPS compliant clusters, we need to make sure that installconfig + agentoconfig based deployments take into account the FIPS config in installconfig.

This task is about passing the config to agentclusterinstall so it makes it into the iso. Once there, AGENT-374 will give it to assisted service

Epic Goal

  • Rebase cluster autoscaler on top of Kubernetes 1.25

Why is this important?

  • Need to pick up latest upstream changes

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story

As a user I would like to see all the events that the autoscaler creates, even duplicates. Having the CAO set this flag will allow me to continue to see these events.

Background

We have carried a patch for the autoscaler that would enable the duplication of events. This patch can now be dropped because the upstream added a flag for this behavior in https://github.com/kubernetes/autoscaler/pull/4921

Steps

  • add the --record-duplicated-events flag to all autoscaler deployments from the CAO

Stakeholders

  • openshift eng

Definition of Done

  • autoscaler continues to work as expected and produces events for everything
  • Docs
  • this does not require documentation as it preserves existing behavior and provides no interface for user interaction
  • Testing
  • current tests should continue to pass

Feature Overview

Add GA support for deploying OpenShift to IBM Public Cloud

Goals

Complete the existing gaps to make OpenShift on IBM Cloud VPC (Next Gen2) General Available

Requirements

Optional requirements

  • OpenShift can be deployed using Mint mode and STS for cloud provider credentials (future release, tbd)
  • OpenShift can be deployed in disconnected mode https://issues.redhat.com/browse/SPLAT-737)
  • OpenShift on IBM Cloud supports User Provisioned Infrastructure (UPI) deployment method (future release, 4.14?)

Epic Goal

  • Enable installation of private clusters on IBM Cloud. This epic will track associated work.

Why is this important?

  • This is required MVP functionality to achieve GA.

Scenarios

  1. Install a private cluster on IBM Cloud.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Background and Goal

Currently in OpenShift we do not support distributing hotfix packages to cluster nodes. In time-sensitive situations, a RHEL hotfix package can be the quickest route to resolving an issue. 

Acceptance Criteria

  1. Under guidance from Red Hat CEE, customers can deploy RHEL hotfix packages to MachineConfigPools.
  2. Customers can easily remove the hotfix when the underlying RHCOS image incorporates the fix.

Before we ship OCP CoreOS layering in https://issues.redhat.com/browse/MCO-165 we need to switch the format of what is currently `machine-os-content` to be the new base image.

The overall plan is:

  • Publish the new base image as `rhel-coreos-8` in the release image
  • Also publish the new extensions container (https://github.com/openshift/os/pull/763) as `rhel-coreos-8-extensions`
  • Teach the MCO to use this without also involving layering/build controller
  • Delete old `machine-os-content`

As a OCP CoreOS layering developer, having telemetry data about number of cluster using osImageURL will help understand how broadly this feature is getting used and improve accordingly.

Acceptance Criteria:

  • Cluster using Custom osImageURL is available via telemetry

After https://github.com/openshift/os/pull/763 is in the release image, teach the MCO how to use it. This is basically:

  • Schedule the extensions container as a kubernetes service (just serves a yum repo via http)
  • Change the MCD to write a file into `/etc/yum.repos.d/machine-config-extensions.repo` that consumes it instead of what it does now in pulling RPMs from the mounted container filesystem

 

Why?

  • Decouple control and data plane. 
    • Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.
  • Improve security
    • Shift credentials out of cluster that support the operation of core platform vs workload
  • Improve cost
    • Allow a user to toggle what they don’t need.
    • Ensure a smooth path to scale to 0 workers and upgrade with 0 workers.

 

Assumption

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure , and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

 

 

Doc: https://docs.google.com/document/d/1sXCaRt3PE0iFmq7ei0Yb1svqzY9bygR5IprjgioRkjc/edit 

Epic Goal

  • To improve debug-ability of ovn-k in hypershift
  • To verify the stability of of ovn-k in hypershift
  • To introduce a EgressIP reach-ability check that will work in hypershift

Why is this important?

  • ovn-k is supposed to be GA in 4.12. We need to make sure it is stable, we know the limitations and we are able to debug it similar to the self hosted cluster.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated

Dependencies (internal and external)

  1. This will need consultation with the people working on HyperShift

Previous Work (Optional):

  1. https://issues.redhat.com/browse/SDN-2589

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Overview 

Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.

Assumption

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure, and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

DoD 

cluster-snapshot-controller-operator is running on the CP. 

More information here: https://docs.google.com/document/d/1sXCaRt3PE0iFmq7ei0Yb1svqzY9bygR5IprjgioRkjc/edit 

As OpenShift developer I want cluster-csi-snapshot-controller-operator to use existing controllers in library-go, so I don’t need to maintain yet another code that does the same thing as library-go.

  • Check and remove manifests/03_configmap.yaml, it does not seem to be useful.
  • Check and remove manifests/03_service.yaml, it does not seem to be useful (at least now).
  • Use DeploymentController from library-go to sync Deployments.
  • Get rid of common/ package? It does not seem to be useful.
  • Use StaticResourceController for static content, including the snapshot CRDs.

Note: if this refactoring introduces any new conditions, we must make sure that 4.11 snapshot controller clears them to support downgrade! This will need 4.11 BZ + z-stream update!

Similarly, if some conditions become obsolete / not managed by any controller, they must be cleared by 4.12 operator.

Exit criteria:

  • The operator code is smaller.
  • No regressions in standalone OCP.
  • Upgrade/downgrade from/to standalone OCP 4.11 works.

As HyperShift Cluster Instance Admin, I want to run cluster-csi-snapshot-controller-operator in the management cluster, so the guest cluster runs just my applications.

  • Add a new cmdline option for the guest cluster kubeconfig file location
  • Parse both kubeconfigs:
    • One from projected service account, which leads to the management cluster.
    • Second from the new cmdline option introduced above. This one leads to the guest cluster.
  • Move creation of manifests/08_webhook_service.yaml from CVO to the operator - it needs to be created in the management cluster.
  • Tag manifests of objects that should not be deployed by CVO in HyperShift by
  • Only on HyperShift:
    • When interacting with Kubernetes API, carefully choose the right kubeconfig to watch / create / update objects in the right cluster.
    • Replace namespaces in all Deployments and other objects that are created in the management cluster. They must be created in the same namespace as the operator.
    • Don’t create operand’s PodDisruptionBudget?
    • Update ValidationWebhookConfiguration to point directly to URL exposed by manifests/08_webhook_service.yaml instead of a Service. The Service is not available in the guest cluster.
    • Pass only the guest kubeconfig to the operands (both the webhook and csi-snapshot-controller).
    • Update unit tests to handle two kube clients.

Exit criteria:

  • cluster-csi-snapshot-controller-operator runs in the management cluster in HyperShift
  • csi-snapshot-controller runs in the management cluster in HyperShift
  • It is possible to take & restore volume snapshot in the guest cluster.
  • No regressions in standalone OCP.

Overview 

Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.

Assumption

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure, and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

DoD 

Run cluster-storage-operator (CSO) + AWS EBS CSI driver operator + AWS EBS CSI driver control-plane Pods in the management cluster, run the driver DaemonSet in the hosted cluster.

More information here: https://docs.google.com/document/d/1sXCaRt3PE0iFmq7ei0Yb1svqzY9bygR5IprjgioRkjc/edit 

 

As HyperShift Cluster Instance Admin, I want to run cluster-storage-operator (CSO) in the management cluster, so the guest cluster runs just my applications.

  • Add a new cmdline option for the guest cluster kubeconfig file location
  • Parse both kubeconfigs:
    • One from projected service account, which leads to the management cluster.
    • Second from the new cmdline option introduced above. This one leads to the guest cluster.
  • Tag manifests of objects that should not be deployed by CVO in HyperShift
  • Only on HyperShift:
    • When interacting with Kubernetes API, carefully choose the right kubeconfig to watch / create / update objects in the right cluster.
    • Replace namespaces in all Deployments and other objects that are created in the management cluster. They must be created in the same namespace as the operator.
    • Pass only the guest kubeconfig to the operands (AWS EBS CSI driver operator).

Exit criteria:

  • CSO and AWS EBS CSI driver operator runs in the management cluster in HyperShift
  • Storage works in the guest cluster.
  • No regressions in standalone OCP.

As OCP support engineer I want the same guest cluster storage-related objects in output of "hypershift dump cluster --dump-guest-cluster" as in "oc adm must-gather ", so I can debug storage issues easily.

 

must-gather collects: storageclasses persistentvolumes volumeattachments csidrivers csinodes volumesnapshotclasses volumesnapshotcontents

hypershift collects none of this, the relevant code is here: https://github.com/openshift/hypershift/blob/bcfade6676f3c344b48144de9e7a36f9b40d3330/cmd/cluster/core/dump.go#L276

 

Exit criteria:

  • verify that hypershift dump cluster --dump-guest-cluster has storage objects from the guest cluster.

As HyperShift Cluster Instance Admin, I want to run AWS EBS CSI driver operator + control plane of the CSI driver in the management cluster, so the guest cluster runs just my applications.

  • Add a new cmdline option for the guest cluster kubeconfig file location
  • Parse both kubeconfigs:
    • One from projected service account, which leads to the management cluster.
    • Second from the new cmdline option introduced above. This one leads to the guest cluster.
  • Only on HyperShift:
    • When interacting with Kubernetes API, carefully choose the right kubeconfig to watch / create / update objects in the right cluster.
    • Replace namespaces in all Deployments and other objects that are created in the management cluster. They must be created in the same namespace as the operator.
  •  
  •  
    • Pass only the guest kubeconfig to the operand (control-plane Deployment of the CSI driver).

Exit criteria:

  • Control plane Deployment of AWS EBS CSI driver runs in the management cluster in HyperShift.
  • Storage works in the guest cluster.
  • No regressions in standalone OCP.

OC mirror is GA product as of Openshift 4.11 .

The goal of this feature is to solve any future customer request for new features or capabilities in OC mirror 

Epic Goal

  • Mirror to mirror operations and custom mirroring flows required by IBM CloudPak catalog management

Why is this important?

  • IBM needs additional customization around the actual mirroring of images to enable CloudPaks to fully adopt OLM-style operator packaging and catalog management
  • IBM CloudPaks introduce additional compute architectures, increasing the download volume by 2/3rds to day, we need the ability to effectively filter non-required image versions of OLM operator catalogs during filtering for other customers that only require a single or a subset of the available image architectures
  • IBM CloudPaks regularly run on older OCP versions like 4.8 which require additional work to be able to read the mirrored catalog produced by oc mirror

Scenarios

  1. Customers can use the oc utility and delegate the actual image mirror step to another tool
  2. Customers can mirror between disconnected registries using the oc utility
  3. The oc utility supports filtering manifest lists in the context of multi-arch images according to the sparse manifest list proposal in the distribution spec

Acceptance Criteria

  • Customers can use the oc utility to mirror between two different air-gapped environments
  • Customers can specify the desired computer architectures and oc mirror will create sparse manifest lists in the target registry as a result

Dependencies (internal and external)

Previous Work:

  1. WRKLDS-369
  2. Disconnected Mirroring Improvement Proposal

Related Work:

  1. https://github.com/opencontainers/distribution-spec/pull/310
  2. https://github.com/distribution/distribution/pull/3536
  3. https://docs.google.com/document/d/10ozLoV7sVPLB8msLx4LYamooQDSW-CAnLiNiJ9SER2k/edit?usp=sharing
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

Incomplete Features

When this image was assembled, these features were not yet completed. Therefore, only the Jira Cards included here are part of this release

OLM would have to support a mechanism like podAffinity which allows multiple architecture values to be specified which enables it to pin operators to the matching architecture worker nodes

Ref: https://github.com/openshift/enhancements/pull/1014

 

Cut a new release of the OLM API and update OLM API dependency version (go.mod) in OLM package; then
Bring the upstream changes from OLM-2674 to the downstream olm repo.

A/C:

 - New OLM API version release
 - OLM API dependency updated in OLM Project
 - OLM Subscription API changes  downstreamed
 - OLM Controller changes  downstreamed
 - Changes manually tested on Cluster Bot

Epic Goal

  • Enabling integration of single hub cluster to install both ARM and x86 spoke clusters
  • Enabling support for heterogeneous OCP clusters
  • document requirements deployment flows
  • support in disconnected environment

Why is this important?

  • clients request

Scenarios

  1. Users manage both ARM and x86 machines, we should not require to have two different hub clusters
  2. Users manage a mixed architecture clusters without requirement of all the nodes to be of the same architecture

Acceptance Criteria

  • Process is well documented
  • we are able to install in a disconnected environment

We have a set of images

  • quay.io/edge-infrastructure/assisted-installer-agent:latest
  • quay.io/edge-infrastructure/assisted-installer-controller:latest
  • quay.io/edge-infrastructure/assisted-installer:latest

that should become multiarch images. This should be done both in upstream and downstream.

As a reference, we have built internally those images as multiarch and made them available as

  • registry.redhat.io/rhai-tech-preview/assisted-installer-agent-rhel8:latest
  • registry.redhat.io/rhai-tech-preview/assisted-installer-reporter-rhel8:latest
  • registry.redhat.io/rhai-tech-preview/assisted-installer-rhel8:latest

They can be consumed by the Assisted Serivce pod via the following env

    - name: AGENT_DOCKER_IMAGE
      value: registry.redhat.io/rhai-tech-preview/assisted-installer-agent-rhel8:latest
    - name: CONTROLLER_IMAGE
      value: registry.redhat.io/rhai-tech-preview/assisted-installer-reporter-rhel8:latest
    - name: INSTALLER_IMAGE
      value: registry.redhat.io/rhai-tech-preview/assisted-installer-rhel8:latest

Feature Overview

We drive OpenShift cross-market customer success and new customer adoption with constant improvements and feature additions to the existing capabilities of our OpenShift Core Networking (SDN and Network Edge). This feature captures that natural progression of the product.

Goals

  • Feature enhancements (performance, scale, configuration, UX, ...)
  • Modernization (incorporation and productization of new technologies)

Requirements

  • Core Networking Stability
  • Core Networking Performance and Scale
  • Core Neworking Extensibility (Multus CNIs)
  • Core Networking UX (Observability)
  • Core Networking Security and Compliance

In Scope

  • Network Edge (ingress, DNS, LB)
  • SDN (CNI plugins, openshift-sdn, OVN, network policy, egressIP, egress Router, ...)
  • Networking Observability

Out of Scope

There are definitely grey areas, but in general:

  • CNV
  • Service Mesh
  • CNF

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

Goal: Provide queryable metrics and telemetry for cluster routes and sharding in an OpenShift cluster.

Problem: Today we test OpenShift performance and scale with best-guess or anecdotal evidence for the number of routes that our customers use. Best practices for a large number of routes in a cluster is to shard, however we have no visibility with regard to if and how customers are using sharding.

Why is this important? These metrics will inform our performance and scale testing, documented cluster limits, and how customers are using sharding for best practice deployments.

Dependencies (internal and external):

Prioritized epics + deliverables (in scope / not in scope):

Not in scope:

Estimate (XS, S, M, L, XL, XXL):

Previous Work:

Open questions:

Acceptance criteria:

Epic Done Checklist:

  • CI - CI Job & Automated tests: <link to CI Job & automated tests>
  • Release Enablement: <link to Feature Enablement Presentation> 
  • DEV - Upstream code and tests merged: <link to meaningful PR orf GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>
  • Notes for Done Checklist
    • Adding links to the above checklist with multiple teams contributing; select a meaningful reference for this Epic.
    • Checklist added to each Epic in the description, to be filled out as phases are completed - tracking progress towards “Done” for the Epic.

Description:

As described in the Metrics to be sent via telemetry section of the Design Doc, the following metrics is needed to be sent from OpenShift cluster to Red Hat premises:

  • Minimum Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:min  : min(route_metrics_controller_routes_per_shard)
    • Gives the minimum value of Routes per Shard.
  • Maximum Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:max  : max(route_metrics_controller_routes_per_shard)
    • Gives the maximum value of Routes per Shard.
  • Average Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:avg  : avg(route_metrics_controller_routes_per_shard)
    • Gives the average value of Routes per Shard.
  • Median Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:median  : quantile(0.5, route_metrics_controller_routes_per_shard)
    • Gives the median value of Routes per Shard.
  • Number of Routes summed by TLS Termination type
    • Recording Rule – cluster:openshift_route_info:tls_termination:sum : sum (openshift_route_info) by (tls_termination)
    • Gives the number of Routes for each tls_termination value. The possible values for tls_termination are edge, passthrough and reencrypt. 

The metrics should be allowlisted on the cluster side.

The steps described in Sending metrics via telemetry are needed to be followed. Specifically step 5.

Depends on CFE-478.

Acceptance Criteria:

  • Support for sending the above mentioned metrics from OpenShift clusters to the Red Hat premises by allowlisting metrics on the cluster side

Description:

As described in the Design Doc, the following information is needed to be exported from Cluster Ingress Operator:

  • Number of routes/shard

Design 2 will be implemented as part of this story.

 

Acceptance Criteria:

  • Support for exporting the above mentioned metrics by Cluster Ingress Operator

This is a epic bucket for all activities surrounding the creation of declarative approach to release and maintain OLM catalogs.

Epic Goal

  • Allow Operator Authors to easily change the layout of the update graph in a single location so they can version/maintain/release it via git and have more approachable controls about graph vertices than today's replaces, skips and/or skipRange taxonomy
  • Allow Operators authors to have control over channel and bundle channel membership

Why is this important?

  • The imperative catalog maintenance approach so far with opm is being moved to a declarative format (OLM-2127 and OLM-1780) moving away from bundle-level controls but the update graph properties are still attached to a bundle
  • We've received feedback from the RHT internal developer community that maintaining and reasoning about the graph in the context of a single channel is still too hard, even with visualization tools
  • making the update graph easily changeable is important to deliver on some of the promises of declarative index configuration
  • The current interface for declarative index configuration still relies on skips, skipRange and replaces to shape the graph on a per-bundle level - this is too complex at a certain point with a lot of bundles in channels, we need to something at the package level

Scenarios

  1. An Operator author wants to release a new version replacing the latest version published previously
  2. After additional post-GA testing an Operator author wants to establish a new update path to an existing released version from an older, released version
  3. After finding a bug post-GA an Operator author wants to temporarily remove a known to be problematic update path
  4. An automated system wants to push a bundle inbetween an existing update path as a result of an Operator (base) image rebuild (Freshmaker use case)
  5. A user wants to take a declarative graph definition and turn it into a graphical image for visually ensuring the graph looks like they want
  6. An Operator author wants to promote a certain bundle to an additional / different channel to indicate progress in maturity of the operator.

Acceptance Criteria

  • The declarative format has to be user readable and terse enough to make quick modifications
  • The declarative format should be machine writeable (Freshmaker)
  • The update graph is declared and modified in a text based format aligned with the declarative config
  • it has to be possible to add / removes edges at the leave of the graph (releasing/unpublishing a new version)
  • it has to be possible to add/remove new vertices between existing edges (releasing/retracting a new update path)
  • it has to be possible to add/remove new edges in between existing vertices (releasing/unpublishing a version inbetween, freshmaker user case)
  • it has to be possible to change the channel member ship of a bundle after it's published (channel promotion)
  • CI - MUST be running successfully with tests automated
  • it has to be possible to add additional metadata later to implement OLM-2087 and OLM-259 if required

Dependencies (internal and external)

  1. Declarative Index Config (OLM-2127)

Previous Work:

  1. Declarative Index Config (OLM-1780)

Related work

Open questions:

  1. What other manipulation scenarios are required?
    1. Answer: deprecation of content in the spirit of OLM-2087
    2. Answer: cross-channel update hints as described in OLM-2059 if that implementation requires it

 

When working on this Epic, it's important to keep in mind this other potentially related Epic: https://issues.redhat.com/browse/OLM-2276

 

enhance the veneer rendering to be able to read the input veneer data from stdin, via a pipe, in a manner similar to https://dev.to/napicella/linux-pipes-in-golang-2e8j

then the command could be used in a manner similar to many k8s examples like

```shell
opm alpha render-veneer semver -o yaml < infile > outfile
```

Upstream issue link: https://github.com/operator-framework/operator-registry/issues/1011

Jira Description

As an OPM maintainer, I want to downstream the PR for (OCP 4.12 ) and backport it to OCP 4.11 so that IIB will NOT be impacted by the changes when it upgrades the OPM version to use the next/future opm upstream release (v1.25.0).

Summary / Background

IIB(the downstream service that manages the indexes) uses the upstream version and if they bump the OPM version to the next/future (v1.25.0) release with this change before having the downstream images updated then: the process to manage the indexes downstream will face issues and it will impact the distributions. 

Acceptance Criteria

  • The changes in the PR are available for the releases which uses FBC -> OCP 4.11, 4.12

Definition of Ready

  • PRs merged into downstream OCP repos branches 4.11/4.12

Definition of Done

  • We checked that the downstream images are with the changes applied (i.e.: we can try to verify in the same way that we checked if the changes were in the downstream for the fix OLM-2639 )

tldr: three basic claims, the rest is explanation and one example

  1. We cannot improve long term maintainability solely by fixing bugs.
  2. Teams should be asked to produce designs for improving maintainability/debugability.
  3. Specific maintenance items (or investigation of maintenance items), should be placed into planning as peer to PM requests and explicitly prioritized against them.

While bugs are an important metric, fixing bugs is different than investing in maintainability and debugability. Investing in fixing bugs will help alleviate immediate problems, but doesn't improve the ability to address future problems. You (may) get a code base with fewer bugs, but when you add a new feature, it will still be hard to debug problems and interactions. This pushes a code base towards stagnation where it gets harder and harder to add features.

One alternative is to ask teams to produce ideas for how they would improve future maintainability and debugability instead of focusing on immediate bugs. This would produce designs that make problem determination, bug resolution, and future feature additions faster over time.

I have a concrete example of one such outcome of focusing on bugs vs quality. We have resolved many bugs about communication failures with ingress by finding problems with point-to-point network communication. We have fixed the individual bugs, but have not improved the code for future debugging. In so doing, we chase many hard to diagnose problem across the stack. The alternative is to create a point-to-point network connectivity capability. this would immediately improve bug resolution and stability (detection) for kuryr, ovs, legacy sdn, network-edge, kube-apiserver, openshift-apiserver, authentication, and console. Bug fixing does not produce the same impact.

We need more investment in our future selves. Saying, "teams should reserve this" doesn't seem to be universally effective. Perhaps an approach that directly asks for designs and impacts and then follows up by placing the items directly in planning and prioritizing against PM feature requests would give teams the confidence to invest in these areas and give broad exposure to systemic problems.


Relevant links:

Epic Goal

  • Change the default value for the spec.tuningOptions.maxConnections field in the IngressController API, which configures the HAProxy maxconn setting, to 50000 (fifty thousand).

Why is this important?

  • The maxconn setting constrains the number of simultaneous connections that HAProxy accepts. Beyond this limit, the kernel queues incoming connections. 
  • Increasing maxconn enables HAProxy to queue incoming connections intelligently.  In particular, this enables HAProxy to respond to health probes promptly while queueing other connections as needed.
  • The default setting of 20000 has been in place since OpenShift 3.5 was released in April 2017 (see BZ#1405440, commit, RHBA-2017:0884). 
  • Hardware capabilities have increased over time, and the current default is too low for typical modern machine sizes. 
  • Increasing the default setting improves HAProxy's performance at an acceptable cost in the common case. 

Scenarios

  1. As a cluster administrator who is installing OpenShift on typical hardware, I want OpenShift router to be tuned appropriately to take advantage of my hardware's capabilities.

Acceptance Criteria

  • CI is passing. 
  • The new default setting is clearly documented. 
  • A release note informs cluster administrators of the change to the default setting. 

Dependencies (internal and external)

  1. None.

Previous Work (Optional):

  1. The  haproxy-max-connections-tuning enhancement made maxconn configurable without changing the default.  The enhancement document details the tradeoffs in terms of memory for various settings of nbthreads and maxconn with various numbers of routes. 

Open questions::

  1. ...

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

 

OCP/Telco Definition of Done

Epic Template descriptions and documentation.

Epic Goal

Why is this important?

  • This regression is a major performance and stability issue and it has happened once before.

Drawbacks

  • The E2E test may be complex due to trying to determine what DNS pods are responding to DNS requests. This is straightforward using the chaos plugin.

Scenarios

  • CI Testing

Acceptance Criteria

  • CI - MUST be running successfully with tests automated

Dependencies (internal and external)

  1. SDN Team

Previous Work (Optional):

  1. N/A

Open questions::

  1. Where do these E2E test go? SDN Repo? DNS Repo?

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub
    Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub
    Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Enable the chaos plugin https://coredns.io/plugins/chaos/ in our CoreDNS configuration so that we can use a DNS query to easily identify what DNS pods are responding to our requests.

Feature Overview

  • This Section:* High-Level description of the feature ie: Executive Summary
  • Note: A Feature is a capability or a well defined set of functionality that delivers business value. Features can include additions or changes to existing functionality. Features can easily span multiple teams, and multiple releases.

 

Goals

  • This Section:* Provide high-level goal statement, providing user context and expected user outcome(s) for this feature

 

Requirements

  • This Section:* A list of specific needs or objectives that a Feature must deliver to satisfy the Feature.. Some requirements will be flagged as MVP. If an MVP gets shifted, the feature shifts. If a non MVP requirement slips, it does not shift the feature.

 

Requirement Notes isMvp?
CI - MUST be running successfully with test automation This is a requirement for ALL features. YES
Release Technical Enablement Provide necessary release enablement details and documents. YES

 

(Optional) Use Cases

This Section: 

  • Main success scenarios - high-level user stories
  • Alternate flow/scenarios - high-level user stories
  • ...

 

Questions to answer…

  • ...

 

Out of Scope

 

Background, and strategic fit

This Section: What does the person writing code, testing, documenting need to know? What context can be provided to frame this feature.

 

Assumptions

  • ...

 

Customer Considerations

  • ...

 

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?  
  • New Content, Updates to existing content,  Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

When OCP is performing cluster upgrade user should be notified about this fact.

There are two possibilities how to surface the cluster upgrade to the users:

  • Display a console notification throughout OCP web UI saying that the cluster is currently under upgrade.
  • Global notification throughout OCP web UI saying that the cluster is currently under upgrade.
  • Have an alert firing for all the users of OCP stating the cluster is undergoing an upgrade. 

 

AC:

  • Console-operator will create a ConsoleNotification CR when the cluster is being upgraded. Once the upgrade is done console-operator will remote that CR. These are the three statuses based on which we are determining if the cluster is being upgraded.
  • Add unit tests

 

Note: We need to decide if we want to distinguish this particular notification by a different color? ccing Ali Mobrem 

 

Created from: https://issues.redhat.com/browse/RFE-3024

As a console user I want to have option to:

  • Restart Deployment
  • Retry latest DeploymentConfig if it failed

 

For Deployments we will add the 'Restart rollout' action button. This action will PATCH the Deployment object's 'spec.template.metadata.annotations' block, by adding 'openshift.io/restartedAt: <actual-timestamp>' annotation. This will restart the deployment, by creating a new ReplicaSet.

  • action is disabled if:
    • Deployment is paused

 

For DeploymentConfig we will add 'Retry rollout' action button.  This action will PATCH the latest revision of ReplicationController object's 'metadata.annotations' block by setting 'openshift.io/deployment/phase: "New"' and removing openshift.io/deployment.cancelled and openshift.io/deployment.status-reason.

  • action is enabled if:
    • latest revision of the ReplicationController resource is in Failed phase
  • action is disabled if:
    • latest revision of the ReplicationController resource is in Complete phase
    • DeploymentConfig does not have any rollouts
    • DeploymentConfigs is paused

 

Acceptance Criteria:

  • Add the 'Restart rollout' action button for the Deployment resource to both action menu and kebab menu
  • Add the 'Retry rollout' action button for the DeploymentConfig resource to both action menu and kebab menu

 

BACKGROUND:

OpenShift console will be updated to allow rollout restart deployment from the console itself.

Currently, from the OpenShift console, for the resource “deploymentconfigs” we can only start and pause the rollout, and for the resource “deployment” we can only resume the rollout. None of the resources (deployment & deployment config) has this option to restart the rollout. So, that is the reason why the customer wants this functionality to perform the same action from the CLI as well as the OpenShift console.

The customer wants developers who are not fluent with the oc tool and terminal utilities, can use the console instead of the terminal to restart deployment, just like we use to do it through CLI using the command “oc rollout restart deploy/<deployment-name>“.
Usually when developers change the config map that deployment uses they have to restart pods. Currently, the developers have to use the oc rollout restart deployment command. The customer wants the functionality to get this button/menu to perform the same action from the console as well.

Design
Doc: https://docs.google.com/document/d/1i-jGtQGaA0OI4CYh8DH5BBIVbocIu_dxNt3vwWmPZdw/edit

As a developer, I want to make status.HostIP for Pods visible in the Pod details page of the OCP Web Console. Currently there is no way to view the node IP for a Pod in the OpenShift Web Console.  When viewing a Pod in the console, the field status.HostIP is not visible.

 

Acceptance criteria:

  • Make pod's HostIP field visible in the pod details page, similarly to PodIP field

Pre-Work Objectives

Since some of our requirements from the ACM team will not be available for the 4.12 timeframe, the team should work on anything we can get done in the scope of the console repo so that when the required items are available in 4.13, we can be more nimble in delivering GA content for the Unified Console Epic.

Overall GA Key Objective
Providing our customers with a single simplified User Experience(Hybrid Cloud Console)that is extensible, can run locally or in the cloud, and is capable of managing the fleet to deep diving into a single cluster. 
Why customers want this?

  1. Single interface to accomplish their tasks
  2. Consistent UX and patterns
  3. Easily accessible: One URL, one set of credentials

Why we want this?

  • Shared code -  improve the velocity of both teams and most importantly ensure consistency of the experience at the code level
  • Pre-built PF4 components
  • Accessibility & i18n
  • Remove barriers for enabling ACM

Phase 2 Goal: Productization of the united Console 

  1. Enable user to quickly change context from fleet view to single cluster view
    1. Add Cluster selector with “All Cluster” Option. “All Cluster” = ACM
    2. Shared SSO across the fleet
    3. Hub OCP Console can connect to remote clusters API
    4. When ACM Installed the user starts from the fleet overview aka “All Clusters”
  2. Share UX between views
    1. ACM Search —> resource list across fleet -> resource details that are consistent with single cluster details view
    2. Add Cluster List to OCP —> Create Cluster

As a developer I would like to disable clusters like *KS that we can't support for multi-cluster (for instance because we can't authenticate). The ManagedCluster resource has a vendor label that we can use to know if the cluster is supported.

cc Ali Mobrem Sho Weimer Jakub Hadvig 

UPDATE: 9/20/22 : we want an allow-list with OpenShift, ROSA, ARO, ROKS, and  OpenShiftDedicated

Acceptance criteria:

  • Investigate if console-operator should pass info about which cluster are supported and unsupported to the frontend
  • Unsupported clusters should not appear in the cluster dropdown
  • Unsupported clusters based off
    • defined vendor label
    • non 4.x ocp clusters

Feature Overview

RHEL CoreOS should be updated to RHEL 9.2 sources to take advantage of newer features, hardware support, and performance improvements.

 

Requirements

  • RHEL 9.x sources for RHCOS builds starting with OCP 4.13 and RHEL 9.2.

 

Requirement Notes isMvp?
CI - MUST be running successfully with test automation This is a requirement for ALL features. YES
Release Technical Enablement Provide necessary release enablement details and documents. YES

(Optional) Use Cases

  • 9.2 Preview via Layering No longer necessary assuming we stay the course of going all in on 9.2

Assumptions

  • ...

Customer Considerations

  • ...

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

PROBLEM

We would like to improve our signal for RHEL9 readiness by increasing internal engineering engagement and external partner engagement on our community OpehShift offering, OKD.

PROPOSAL

Adding OKD to run on SCOS (a CentOS stream for CoreOS) brings the community offering closer to what a partner or an internal engineering team might expect on OCP.

ACCEPTANCE CRITERIA

Image has been switched/included: 

DEPENDENCIES

The SCOS build payload.

RELATED RESOURCES

OKD+SCOS proposal: https://docs.google.com/presentation/d/1_Xa9Z4tSqB7U2No7WA0KXb3lDIngNaQpS504ZLrCmg8/edit#slide=id.p

OKD+SCOS work draft: https://docs.google.com/document/d/1cuWOXhATexNLWGKLjaOcVF4V95JJjP1E3UmQ2kDVzsA/edit

 

Acceptance Criteria

A stable OKD on SCOS is built and available to the community sprintly.

 

This comes up when installing ipi-on-aws on arm64 with the custom payload build at quay.io/aleskandrox/okd-release:4.12.0-0.okd-centos9-full-rebuild-arm64 that is using scos as machine-content-os image

 

```

[root@ip-10-0-135-176 core]# crictl logs c483c92e118d8
2022-08-11T12:19:39+00:00 [cnibincopy] FATAL ERROR: Unsupported OS ID=scos
```

 

The probable fix has to land on https://github.com/openshift/cluster-network-operator/blob/master/bindata/network/multus/multus.yaml#L41-L53

Overview 

HyperShift came to life to serve multiple goals, some are main near-term, some are secondary that serve well long-term. 

Main Goals for hosted control planes (HyperShift)

  • Optimize OpenShift for Cost/footprint/ which improves our competitive stance against the *KSes
  • Establish separation of concerns which makes it more resilient for SRE to manage their workload clusters (be it security, configuration management, etc).
  • Simplify and enhance multi-cluster management experience especially since multi-cluster is becoming an industry need nowadays. 

Secondary Goals

HyperShift opens up doors to penetrate the market. HyperShift enables true hybrid (CP and Workers decoupled, mixed IaaS, mixed Arch,...). An architecture that opens up more options to target new opportunities in the cloud space. For more details on this one check: Hosted Control Planes (aka HyperShift) Strategy [Live Document]

 

Hosted Control Planes (HyperShift) Map 

To bring hosted control planes to our customers, we need the means to ship it. Today MCE is how HyperShift shipped, and installed so that customers can use it. There are two main customers for hosted-control-planes: 

 

  • Self-managed: In that case, Red Hat would provide hosted control planes as a service that is managed and SREed by the customer for their tenants (hence “self”-managed). In this management model, our external customers are the direct consumers of the multi-cluster control plane as a servie. Once MCE is installed, they can start to self-service dedicated control planes. 

 

  • Managed: This is OpenShift as a managed service, today we only “manage” the CP, and share the responsibility for other system components, more info here. To reduce management costs incurred by service delivery organizations which translates to operating profit (by reducing variable costs per control-plane), as well as to improve user experience, lower platform overhead (allow customers to focus mostly on writing applications and not concern themselves with infrastructure artifacts), and improve the cluster provisioning experience. HyperShift is shipped via MCE, and delivered to Red Hat managed SREs (same consumption route). However, for managed services, additional tooling needs to be refactored to support the new provisioning path. Furthermore, unlike self-managed where customers are free to bring their own observability stack, Red Hat managed SREs need to observe the managed fleet to ensure compliance with SLOs/SLIs/…

 

If you have noticed, MCE is the delivery mechanism for both management models. The difference between managed and self-managed is the consumer persona. For self-managed, it's the customer SRE for managed its the RH SRE

High-level Requirements

For us to ship HyperShift in the product (as hosted control planes) in either management model, there is a necessary readiness checklist that we need to satisfy. Below are the high-level requirements needed before GA: 

 

  • Hosted control planes fits well with our multi-cluster story (with MCE)
  • Hosted control planes APIs are stable for consumption  
  • Customers are not paying for control planes/infra components.  
  • Hosted control planes has an HA and a DR story
  • Hosted control planes is in parity with top-level add-on operators 
  • Hosted control planes reports metrics on usage/adoption
  • Hosted control planes is observable  
  • HyperShift as a backend to managed services is fully unblocked.

 

Please also have a look at our What are we missing in Core HyperShift for GA Readiness? doc. 

Hosted control planes fits well with our multi-cluster story

Multi-cluster is becoming an industry need today not because this is where trend is going but because it’s the only viable path today to solve for many of our customer’s use-cases. Below is some reasoning why multi-cluster is a NEED:

 

 

As a result, multi-cluster management is a defining category in the market where Red Hat plays a key role. Today Red Hat solves for multi-cluster via RHACM and MCE. The goal is to simplify fleet management complexity by providing a single pane of glass to observe, secure, police, govern, configure a fleet. I.e., the operand is no longer one cluster but a set, a fleet of clusters. 

HyperShift logically centralized architecture, as well as native separation of concerns and superior cluster lifecyle management experience, makes it a great fit as the foundation of our multi-cluster management story. 

Thus the following stories are important for HyperShift: 

  • When lifecycling OpenShift clusters (for any OpenShift form factor) on any of the supported providers from MCE/ACM/OCM/CLI as a Cluster Service Consumer  (RH managed SRE, or self-manage SRE/admin):
  • I want to be able to use a consistent UI so I can manage and operate (observe, govern,...) a fleet of clusters.
  • I want to specify HA constraints (e.g., deploy my clusters in different regions) while ensuring acceptable QoS (e.g., latency boundaries) to ensure/reduce any potential downtime for my workloads. 
  • When operating OpenShift clusters (for any OpenShift form factor) on any of the supported provider from MCE/ACM/OCM/CLI as a Cluster Service Consumer  (RH managed SRE, or self-manage SRE/admin):
  • I want to be able to backup any critical data so I am able to restore them in case of hosting service cluster (management cluster) failure. 

Refs:

Hosted control planes APIs are stable for consumption.

 

HyperShift is the core engine that will be used to provide hosted control-planes for consumption in managed and self-managed. 

 

Main user story:  When life cycling clusters as a cluster service consumer via HyperShift core APIs, I want to use a stable/backward compatible API that is less susceptible to future changes so I can provide availability guarantees. 

 

Ref: What are we missing in Core HyperShift for GA Readiness?

Customers are not paying for control planes/infra components. 

 

Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.

Assumptions

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure , and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

HyperShift - proposed cuts from data plane

HyperShift has an HA and a DR story

When operating OpenShift clusters (for any OpenShift form factor) from MCE/ACM/OCM/CLI as a Cluster Service Consumer  (RH managed SRE, or self-manage SRE/admin) I want to be able to migrate CPs from one hosting service cluster to another:

  • as means for disaster recovery in the case of total failure
  • so that scaling pressures on a management cluster can be mitigated or a management cluster can be decommissioned.

More information: 

 

Hosted control planes reports metrics on usage/adoption

To understand usage patterns and inform our decision making for the product. We need to be able to measure adoption and assess usage.

See Hosted Control Planes (aka HyperShift) Strategy [Live Document]

Hosted control plane is observable  

Whether it's managed or self-managed, it’s pertinent to report health metrics to be able to create meaningful Service Level Objectives (SLOs), alert of failure to meet our availability guarantees. This is especially important for our managed services path. 

HyperShift is in parity with top-level add-on operators

https://issues.redhat.com/browse/OCPPLAN-8901 

Unblock HyperShift as a backend to managed services

HyperShift for managed services is a strategic company goal as it improves usability, feature, and cost competitiveness against other managed solutions, and because managed services/consumption-based cloud services is where we see the market growing (customers are looking to delegate platform overhead). 

 

We should make sure our SD milestones are unblocked by the core team. 

 

Note 

This feature reflects HyperShift core readiness to be consumed. When all related EPICs and stories in this EPIC are complete HyperShift can be considered ready to be consumed in GA form. This does not describe a date but rather the readiness of core HyperShift to be consumed in GA form NOT the GA itself.

- GA date for self-managed will be factoring in other inputs such as adoption, customer interest/commitment, and other factors. 
- GA dates for ROSA-HyperShift are on track, tracked in milestones M1-7 (have a look at https://issues.redhat.com/browse/OCPPLAN-5771

Epic Goal*

The goal is to split client certificate trust chains from the global Hypershift root CA.

 
Why is this important? (mandatory)

This is important to:

  • assure a workload can be run on any kind of OCP flavor
  • reduce the blast radius in case of a sensitive material leak
  • separate trust to allow more granular control over client certificate authentication

 
Scenarios (mandatory) 

Provide details for user scenarios including actions to be performed, platform specifications, and user personas.  

  1. I would like to be able to run my workloads on any OpenShift-like platform.
    My workloads allow components to authenticate using client certificates based
    on a trust bundle that I am able to retrieve from the cluster.
  1. I don't want my users to have access to any CA bundle that would allow them
    to trust a random certificate from the cluster for client certificate authentication.

 
Dependencies (internal and external) (mandatory)

Hypershift team needs to provide us with code reviews and merge the changes we are to deliver

Contributing Teams(and contacts) (mandatory) 

  • Development - OpenShift Auth, Hypershift
  • Documentation -OpenShift Auth Docs team
  • QE - OpenShift Auth QE
  • PX - I have no idea what PX is
  • Others - others

Acceptance Criteria (optional)

The serviceaccount CA bundle automatically injected to all pods cannot be used to authenticate any client certificate generated by the control-plane.

Drawbacks or Risk (optional)

Risk: there is a throbbing time pressure as this should be delivered before first stable Hypershift release

Done - Checklist (mandatory)

  • CI Testing -  Basic e2e automationTests are merged and completing successfully
  • Documentation - Content development is complete.
  • QE - Test scenarios are written and executed successfully.
  • Technical Enablement - Slides are complete (if requested by PLM)
  • Engineering Stories Merged
  • All associated work items with the Epic are closed
  • Epic status should be “Release Pending” 

Feature Overview (aka. Goal Summary)  

The MCO should properly report its state in a way that's consistent and able to be understood by customers, troubleshooters, and maintainers alike. 

Some customer cases have revealed scenarios where the MCO state reporting is misleading and therefore could be unreliable to base decisions and automation on.

In addition to correcting some incorrect states, the MCO will be enhanced for a more granular view of update rollouts across machines.

The MCO should properly report its state in a way that's consistent and able to be understood by customers, troubleshooters, and maintainers alike. 

For this epic, "state" means "what is the MCO doing?" – so the goal here is to try to make sure that it's always known what the MCO is doing. 

This includes: 

  • Conditions
  • Some Logging 
  • Possibly Some Events 

While this probably crosses a little bit into the "status" portion of certain MCO objects, as some state is definitely recorded there, this probably shouldn't turn into a "better status reporting" epic.  I'm interpreting "status" to mean "how is it going" so status is maybe a "detail attached to a state". 

 

Exploration here: https://docs.google.com/document/d/1j6Qea98aVP12kzmPbR_3Y-3-meJQBf0_K6HxZOkzbNk/edit?usp=sharing

 

https://docs.google.com/document/d/17qYml7CETIaDmcEO-6OGQGNO0d7HtfyU7W4OMA6kTeM/edit?usp=sharing

 

The current property description is:

configuration represents the current MachineConfig object for the machine config pool.

But in a 4.12.0-ec.4 cluster, the actual semantics seem to be something closer to "the most recent rendered config that we completely leveled on". We should at least update the godocs to be more specific about the intended semantics. And perhaps consider adjusting the semantics?

Complete Epics

This section includes Jira cards that are linked to an Epic, but the Epic itself is not linked to any Feature. These epics were completed when this image was assembled

Epic Goal

  • Update OpenShift components that are owned by the Builds + Jenkins Team to use Kubernetes 1.25

Why is this important?

  • Our components need to be updated to ensure that they are using the latest bug/CVE fixes, features, and that they are API compatible with other OpenShift components.

Acceptance Criteria

  • Existing CI/CD tests must be passing

This is epic tracks "business as usual" requirements / enhancements / bug fixing of Insights Operator.

Today the links point at a rule-scoped page, but that page lacks information about recommended resolution.  You can click through by cluster ID to your specific cluster and get that recommendation advice, but it would be more convenient and less confusing for customers if we linked directly to the cluster-scoped recommendation page.

We can implement by updating the template here to be:

fmt.Sprintf("https://console.redhat.com/openshift/insights/advisor/clusters/%s?first=%s%%7C%s", clusterID, ruleIDStr, rec.ErrorKey)

or something like that.

 

unknowns

request is clear, solution/implementation to be further clarified

This epic contains all the Dynamic Plugins related stories for OCP release-4.11 

Epic Goal

  • Track all the stories under a single epic

Acceptance Criteria

  •  

This story only covers API components. We will create a separate story for other utility functions.

Today we are generating documentation for Console's Dynamic Plugin SDK in
frontend/packages/dynamic-plugin-sdk. We are missing ts-doc for a set of hooks and components.

We are generating the markdown from the dynamic-plugin-sdk using

yarn generate-doc

Here is the list of the API that the dynamic-plugin-sdk is exposing:

https://gist.github.com/spadgett/0ddefd7ab575940334429200f4f7219a

Acceptance Criteria:

  • Add missing jsdocs for the API that dynamic-plugin-sdk exposes

Out of Scope:

  • This does not include work for integrating the API docs into the OpenShift docs
  • This does not cover other public utilities, only components.

This epic contains all the Dynamic Plugins related stories for OCP release-4.12

Epic Goal

  • Track all the stories under a single epic

Acceptance Criteria

Based on API review CONSOLE-3145, we have decided to deprecate the following APIs:

  • useAccessReviewAllowed (use useAccessReview instead)
  • useSafetyFirst

cc Andrew Ballantyne Bryan Florkiewicz 

Currently our `api.md` does not generate docs with "tags" (aka `@deprecated`) – we'll need to add that functionality to the `generate-doc.ts` script. See the code that works for `console-extensions.md`

`@openshift-console/plugin-shared` (NPM) is a package that will contain shared components that can be upversioned separately by the Plugins so they can keep core compatibility low but upversion and support more shared components as we need them.

This isn't documented today. We need to do that.

Acceptance Criteria

  • Add a note in the "SDK packages" section of the README about the existence of this package and it's purpose
    • The purpose of being a static utility delivery library intended not to be tied to OpenShift Console versions and compatible with multiple version of OpenShift Console

when defining two proxy endpoints, 
apiVersion: console.openshift.io/v1alpha1
kind: ConsolePlugin
metadata:
...
name: forklift-console-plugin
spec:
displayName: Console Plugin Template
proxy:

  • alias: forklift-inventory
    authorize: true
    service:
    name: forklift-inventory
    namespace: konveyor-forklift
    port: 8443
    type: Service
  • alias: forklift-must-gather-api
    authorize: true
    service:
    name: forklift-must-gather-api
    namespace: konveyor-forklift
    port: 8443
    type: Service

service:
basePath: /
I get two proxy endpoints
/api/proxy/plugin/forklift-console-plugin/forklift-inventory
and
/api/proxy/plugin/forklift-console-plugin/forklift-must-gather-api

but both proxy to the `forklift-must-gather-api` service

e.g.
curl to:
[server url]/api/proxy/plugin/forklift-console-plugin/forklift-inventory
will point to the `forklift-must-gather-api` service, instead of the `forklift-inventory` service

We neither use nor support static plugin nav extensions anymore so we should remove the API in the static plugin SDK and get rid of related cruft in our current nav components.

 

AC: Remove static plugin nav extensions code. Check the navigation code for any references to the old API.

Currently the ConsolePlugins API version is v1alpha1. Since we are going GA with dynamic plugins we should be creating a v1 version.

This would require updates in following repositories:

  1. openshift/api (add the v1 version and generate a new CRD)
  2. openshift/client-go (picku the changes in the openshift/api repo and generate clients & informers for the new v1 version)
  3. openshift/console-operator repository will using both the new v1 version and v1alpha1 in code and manifests folder.

AC:

  • both v1 and v1alpha1 ConsolePlugins should be passed to the console-config.yaml when the plugins are enabled and present on the cluster.

 

NOTE: This story does not include the conversion webhook change which will be created as a follow on story

We should have a global notification or the `Console plugins` page (e.g., k8s/cluster/operator.openshift.io~v1~Console/cluster/console-plugins) should alert users when console operator `spec.managementState` is `Unmanaged` as changes to `enabled` for plugins will have no effect.

The console has good error boundary components that are useful for dynamic plugin.
Exposing them will enable the plugins to get the same look and feel of handling react errors as console
The minimum requirement right now is to expose the ErrorBoundaryFallbackPage component from
https://github.com/openshift/console/blob/master/frontend/packages/console-shared/src/components/error/fallbacks/ErrorBoundaryFallbackPage.tsx

The extension `console.dashboards/overview/detail/item` doesn't constrain the content to fit the card.

The details-card has an expectation that a <dd> item will be the last item (for spacing between items). Our static details-card items use a component called 'OverviewDetailItem'. This isn't enforced in the extension and can cause undesired padding issues if they just do whatever they want.

I feel our approach here should be making the extension take the props of 'OverviewDetailItem' where 'children' is the new 'component'.

Acceptance Criteria:

  • Deprecate the old extension (in docs, with date/stamp)
  • Make a new extension that applies a stricter type
  • Include this new extension next to the old one (with the error boundary around it)

Following https://coreos.slack.com/archives/C011BL0FEKZ/p1650640804532309, it would be useful for us (network observability team) to have access to ResourceIcon in dynamic-plugin-sdk.

Currently ResourceLink is exported but not ResourceIcon

 

AC:

  • Require the ResourceIcon  from public to dynamic-plugin-sdk
  • Add the component to the dynamic-demo-plugin
  • Add a CI test to check for the ResourceIcon component

 

Move `frontend/public/components/nav` to `packages/console-app/src/components/nav` and address any issues resulting from the move.

There will be some expected lint errors relating to cyclical imports. These will require some refactoring to address.

To align with https://github.com/openshift/dynamic-plugin-sdk, plugin metadata field dependencies as well as the @console/pluginAPI entry contained within should be made optional.

If a plugin doesn't declare the @console/pluginAPI dependency, the Console release version check should be skipped for that plugin.

During the development of https://issues.redhat.com/browse/CONSOLE-3062, it was determined additional information is needed in order to assist a user when troubleshooting a Failed plugin (see https://github.com/openshift/console/pull/11664#issuecomment-1159024959). As it stands today, there is no data available to the console to relay to the user regarding why the plugin Failed. Presumably, a message should be added to NotLoadedDynamicPlugin to address this gap.

 

AC: Add `message` property to NotLoadedDynamicPluginInfo type.

This epic contains all the OLM related stories for OCP release-4.12

Epic Goal

  • Track all the stories under a single epic

This enhancement Introduces support for provisioning and upgrading heterogenous architecture clusters in phases.

 

We need to scan through the compute nodes and build a set of supported architectures from those. Each node on the cluster has a label for architecture: e.g. `kuberneties.io/arch:arm64`, `kubernetes.io/arch:amd64` etc. Based on the set of supported architectures console will need to surface only those operators in the Operator Hub, which are supported on our Nodes. Each operator's PackageManifest contains a labels that indicates whats the operator's supported architecture, e.g.  `operatorframework.io/arch.s390x: supported`. An operator can be supported on multiple architectures

AC:

  1. Implement logic in the console's backend to read the set of architecture types from console-config.yaml and set it as a SERVER_FLAG.nodeArchitectures (Change similar to https://github.com/openshift/console/commit/39aabe171a2e89ed3757ac2146d252d087fdfd33)
  2. In Operator hub render only operators that are support on any given node, based on the SERVER_FLAG.nodeArchitectures field implemented in CONSOLE-3242.

 

OS and arch filtering: https://github.com/openshift/console/blob/2ad4e17d76acbe72171407fc1c66ca4596c8aac4/frontend/packages/operator-lifecycle-manager/src/components/operator-hub/operator-hub-items.tsx#L49-L86

 

@jpoulin is good to ask about heterogeneous clusters.

This enhancement Introduces support for provisioning and upgrading heterogenous architecture clusters in phases.

 

We need to scan through the compute nodes and build a set of supported architectures from those. Each node on the cluster has a label for architecture: e.g. kubernetes.io/arch=arm64, kubernetes.io/arch=amd64 etc. Based on the set of supported architectures console will need to surface only those operators in the Operator Hub, which are supported on our Nodes.

 

AC: 

  1. Implement logic in the console-operator that will scan though all the nodes and build a set of all the architecture types that the cluster nodes run on and pass it to the console-config.yaml
  2. Add unit and e2e test cases in the console-operator repository.

 

@jpoulin is good to ask about heterogeneous clusters.

An epic we can duplicate for each release to ensure we have a place to catch things we ought to be doing regularly but can tend to fall by the wayside.

As a developer, I want to be able to clean up the css markup after making the css / scss changes required for dark mode and remove any old unused css / scss content. 

 

Acceptance criteria:

  • Remove any unused scss / css content after revamping for dark mode

Epic Goal

  • Enable OpenShift IPI Installer to deploy OCP to a shared VPC in GCP.
  • The host project is where the VPC and subnets are defined. Those networks are shared to one or more service projects.
  • Objects created by the installer are created in the service project where possible. Firewall rules may be the only exception.
  • Documentation outlines the needed minimal IAM for both the host and service project.

Why is this important?

  • Shared VPC's are a feature of GCP to enable granular separation of duties for organizations that centrally manage networking but delegate other functions and separation of billing. This is used more often in larger organizations where separate teams manage subsets of the cloud infrastructure. Enterprises that use this model would also like to create IPI clusters so that they can leverage the features of IPI. Currently organizations that use Shared VPC's must use UPI and implement the features of IPI themselves. This is repetative engineering of little value to the customer and an increased risk of drift from upstream IPI over time. As new features are built into IPI, organizations must become aware of those changes and implement them themselves instead of getting them "for free" during upgrades.

Scenarios

  1. Deploy cluster(s) into service project(s) on network(s) shared from a host project.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story:

As a user, I want to be able to:

  • skip creating service accounts in Terraform when using passthrough credentialsMode.
  • pass the installer service account to Terraform to be used as the service account for instances when using passthrough credentialsMode.

so that I can achieve

  • creating an IPI cluster using Shared VPC networks using a pre-created service account with the necessary permissions in the Host Project.

Acceptance Criteria:

Description of criteria:

  • Upstream documentation
  • Point 1
  • Point 2
  • Point 3

(optional) Out of Scope:

Detail about what is specifically not being delivered in the story

Engineering Details:

1. Proposed title of this feature request
Basic authentication for Helm Chart repository in helmchartrepositories.helm.openshift.io CRD.

2. What is the nature and description of the request?
As of v4.6.9, the HelmChartRepository CRD only supports client TLS authentication through spec.connectionConfig.tlsClientConfig.

3. Why do you need this? (List the business requirements here)
Basic authentication is widely used by many chart repositories managers (Nexus OSS, Artifactory, etc.)
Helm CLI also supports them with the helm repo add command.
https://helm.sh/docs/helm/helm_repo_add/

4. How would you like to achieve this? (List the functional requirements here)
Probably by extending the CRD:

spec:
connectionConfig:
username: username
password:
secretName: secret-name

The secret namespace should be openshift-config to align with the tlsClientConfig behavior.

5. For each functional requirement listed in question 4, specify how Red Hat and the customer can test to confirm the requirement is successfully implemented.
Trying to pull helm charts from remote private chart repositories that has disabled anonymous access and offers basic authentication.
E.g.: https://github.com/sonatype/docker-nexus

Owner: Architect:

Story (Required)

As an OCP user I will like to be able to install helm charts from repos added to ODC with basic authentication fields populated

Background (Required)

We need to support helm installs for Repos that have the basic authentication secret name and namespace.

Glossary

Out of scope

Updating the ProjectHelmChartRepository CRD, already done in diff story
Supporting the HelmChartRepository CR, this feature will be scoped first to project/namespace scope repos.

In Scope

<Defines what is included in this story>

Approach(Required)

If the new fields for basic auth are set in the repo CR then use those credentials when making API calls to helm to install/upgrade charts. We will error out if user logged in does not have access to the secret referenced by Repo CR. If basic auth fields are not present we assume is not an authenticated repo.

Dependencies

Nonet

Edge Case

NA

Acceptance Criteria

I can list, install and update charts on authenticated repos from ODC
Needs Documentation both upstream and downstream
Needs new unit test covering repo auth

INVEST Checklist

Dependencies identified
Blockers noted and expected delivery timelines set
Design is implementable
Acceptance criteria agreed upon
Story estimated

Legend

Unknown
Verified
Unsatisfied

Epic Goal

  • Support manifest lists by image streams and the integrated registry. Clients should be able to pull/push manifests lists from/into the integrated registry. They also should be able to import images via `oc import-image` and them pull them from the internal registry.

Why is this important?

  • Manifest lists are becoming more and more popular. Customers want to mirror manifest lists into the registry and be able to pull them by digest.

Scenarios

  1. Manifest lists can be pushed into the integrated registry
  2. Imported manifests list can be pulled from the integrated registry
  3. Image triggers work with manifest lists

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • Existing functionality shouldn't change its behavior

Dependencies (internal and external)

  1. ...

Previous Work (Optional)

  1. https://github.com/openshift/enhancements/blob/master/enhancements/manifestlist/manifestlist-support.md

Open questions

  1. Can we merge creation of images without having the pruner?

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

ACCEPTANCE CRITERIA

  • The ImageStream object should contain a new flag indicating that it refers to a manifest list
  • openshift-controller-manager uses new openshift/api code to import image streams
  • changing `importMode` of an image stream tag triggers a new import (i.e. updates generation in the tag spec)

NOTES

This is a follow up Epic to https://issues.redhat.com/browse/MCO-144, which aimed to get in-place upgrades for Hypershift. This epic aims to capture additional work to focus on using CoreOS/OCP layering into Hypershift, which has benefits such as:

 

 - removing or reducing the need for ignition

 - maintaining feature parity between self-driving and managed OCP models

 - adding additional functionality such as hotfixes

Currently not implemented, and will require the MCD hypershift mode to be adjusted to handle disruptionless upgrades like regular MCD

Right now in https://github.com/openshift/hypershift/pull/1258 you can only perform one upgrade at a time. Multiple upgrades will break due to controller logic

 

Properly create logic to handle manifest creation/updates and deletion, so the logic is more bulletproof

We plan to build Ironic Container Images using RHEL9 as base image in OCP 4.12

This is required because the ironic components have abandoned support for CentOS Stream 8 and Python 3.6/3.7 upstream during the most recent development cycle that will produce the stable Zed release, in favor of CentOS Stream 9 and Python 3.8/3.9

More info on RHEL8 to RHEL9 transition in OCP can be found at https://docs.google.com/document/d/1N8KyDY7KmgUYA9EOtDDQolebz0qi3nhT20IOn4D-xS4

Epic Goal

  • We need the installer to accept a LB type from user and then we could set type of LB in the following object.
    oc get ingress.config.openshift.io/cluster -o yaml
    Then we can fetch info from this object and reconcile the operator to have the NLB changes reflected.

 

This is an API change and we will consider this as a feature request.

Why is this important?

https://issues.redhat.com/browse/NE-799 Please check this for more details

 

Scenarios

https://issues.redhat.com/browse/NE-799 Please check this for more details

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. installer
  2. ingress operator

Previous Work (Optional):

 No

Open questions::

N/A

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

We need tests for the ovirt-csi-driver and the cluster-api-provider-ovirt. These tests help us to

  • minimize bugs,
  • reproduce and fix them faster and
  • pin down current behavior of the driver

Also, having dedicated tests on lower levels with a smaller scope (unit, integration, ...) has the following benefits:

  • fast feedback cycle (local test execution)
  • developer in-code documentation
  • easier onboarding for new contributers
  • lower resource consumption
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

Description

As a user, I would like to be informed in an intuitive way,  when quotas have been reached in a namespace

Acceptance Criteria

  1. Show an alert banner on the Topology and add page for this project/namespace when there is a RQ (Resource Quota) / ACRQ (Applied Cluster Resource Quota) issue
    PF guideline: https://www.patternfly.org/v4/components/alert/design-guidelines#using-alerts 
  2. The above alert should have a CTA link to the search page with all RQ, ACRQ and if there is just one show the details page for the same
  3. For RQ, ACRQ list view show one more column called status with details as shown in the project view.

Additional Details:

 

Refer below for more details 

Description

As a user, In the topology view, I would like to be updated intuitively if any of the deployments have reached quota limits

Acceptance Criteria

  1. Show a yellow border around deployments if any of the deployments have reached the quota limit
  2. For deployments, if there are any errors associated with resource limits or quotas, include a warning alert in the side panel.
    1. If we know resource limits are the cause, include link to Edit resource limits
    2. If we know pod count is the cause, include a link to Edit pod count

Additional Details:

 

Refer below for more details 

Goal

Provide a form driven experience to allow cluster admins to manage the perspectives to meet the ACs below.

Problem:

We have heard the following requests from customers and developer advocates:

  • Some admins do not want to provide access to the Developer Perspective from the console
  • Some admins do not want to provide non-priv users access to the Admin Perspective from the console

Acceptance criteria:

  1. Cluster administrator is able to "hide" the admin perspective for non-priv users
  2. Cluster administrator is able to "hide" the developer perspective for all users
  3. Be user that User Preferences for individual users behaves appropriately. If only one perspective is available, the perspective switcher is not needed.

Dependencies (External/Internal):

Design Artifacts:

Exploration:

Note:

Description

As an admin, I should be able to see a code snippet that shows how to add user perspectives

Based on the https://issues.redhat.com/browse/ODC-6732 enhancement proposal, the cluster admin can add user perspectives

To support the cluster-admin to configure the perspectives correctly, the developer console should provide a code snippet for the customization of yaml resource (Console CRD).

Customize Perspective Enhancement PR: https://github.com/openshift/enhancements/pull/1205

Acceptance Criteria

  1. When the admin opens the Console CRD there is a snippet in the sidebar which provides a default YAML which supports the admin to add user perspectives

Additional Details:

Previous work:

  1. https://issues.redhat.com/browse/ODC-5080
  2. https://issues.redhat.com/browse/ODC-5449

Description

As an admin, I want to be able to use a form driven experience  to hide user perspective(s)

Acceptance Criteria

  1. Add checkboxes with the options
    1. Hide "Administrator" perspective for non-privileged users
    2.  Hide "Developer" perspective for all users
  2. The console configuration CR should be updated as per the selected option

Additional Details:

Description

As an admin, I want to hide the admin perspective for non-privileged users or hide the developer perspective for all users

Based on the https://issues.redhat.com/browse/ODC-6730 enhancement proposal, it is required to extend the console configuration CRD to enable the cluster admins to configure this data in the console resource

Acceptance Criteria

  1. Extend the "customization" spec type definition for the CRD in the openshift/api project

Additional Details:

Previous customization work:

  1. https://issues.redhat.com/browse/ODC-5416
  2. https://issues.redhat.com/browse/ODC-5020
  3. https://issues.redhat.com/browse/ODC-5447

Description

As an admin, I want to hide user perspective(s) based on the customization.

Acceptance Criteria

  1. Hide perspective(s) based on the customization
    1. When the admin perspective is disabled -> we hide the admin perspective for all unprivileged users
    2. When the dev perspective is disabled -> we hide the dev perspective for all users
  2. When all the perspectives are hidden from a user or for all users, show the Admin perspective by default

Additional Details:

Problem:

Customers don't want their users to have access to some/all of the items which are available in the Developer Catalog.  The request is to change access for the cluster, not per user or persona.

Goal:

Provide a form driven experience to allow cluster admins easily disable the Developer Catalog, or one or more of the sub catalogs in the Developer Catalog.

Why is it important?

Multiple customer requests.

Acceptance criteria:

  1. As a cluster admin, I can hide/disable access to the developer catalog for all users across all namespaces.
  2. As a cluster admin, I can hide/disable access to a specific sub-catalog in the developer catalog for all users across all namespaces.
    1. Builder Images
    2. Templates
    3. Helm Charts
    4. Devfiles
    5. Operator Backed

Notes

We need to consider how this will work with subcatalogs which are installed by operators: VMs, Event Sources, Event Catalogs, Managed Services, Cloud based services

Dependencies (External/Internal):

Design Artifacts:

Exploration:

Note:

Description

As an admin, I want to hide/disable access to specific sub-catalogs in the developer catalog or the complete dev catalog for all users across all namespaces.

Based on the https://issues.redhat.com/browse/ODC-6732 enhancement proposal, it is required to extend the console configuration CRD to enable the cluster admins to configure this data in the console resource

Acceptance Criteria

Extend the "customization" spec type definition for the CRD in the openshift/api project

Additional Details:

Previous customization work:

  1. https://issues.redhat.com/browse/ODC-5416
  2. https://issues.redhat.com/browse/ODC-5020
  3. https://issues.redhat.com/browse/ODC-5447

Description

As a cluster-admin, I should be able to see a code snippet that shows how to enable sub-catalogs or the entire dev catalog.

Based on the https://issues.redhat.com/browse/ODC-6732 enhancement proposal, the cluster admin can add sub-catalog(s)  from the Developer Catalog or the Dev catalog as a whole.

To support the cluster-admin to configure the sub-catalog list correctly, the developer console should provide a code snippet for the customization yaml resource (Console CRD).

Acceptance Criteria

  1. When the admin opens the Console CRD there is a snippet in the sidebar which provides a default YAML, which supports the admin to add sub-catalogs/the whole dev catalog

Additional Details:

Previous work:

  1. https://issues.redhat.com/browse/ODC-5080
  2. https://issues.redhat.com/browse/ODC-5449

Description

As an admin, I want to hide sub-catalogs in the developer catalog or hide the developer catalog completely based on the customization.

Acceptance Criteria

  1. Hide all links to the sub-catalog(s) from the add page, topology actions, empty states, quick search, and the catalog itself
  2. The sub-catalog should show Not found if the user opens the sub-catalog directly
  3. The feature should not be hidden if a sub-catalog option is disabled

Additional Details:

Epic Goal

  • Facilitate the transition to for OLM and content to PSA enforcing the `restricted` security profile
  • Use the label synch'er to enforce the required security profile
  • Current content should work out-of-the-box as is
  • Upgrades should not be blocked

Why is this important?

  • PSA helps secure the cluster by enforcing certain security restrictions that the pod must meet to be scheduled
  • 4.12 will enforce the `restricted` profile, which will affect the deployment of operators in `openshift-*` namespaces 

Scenarios

  1. Admin installs operator in an `openshift-*`namespace that is not managed by the label syncher -> label should be applied
  2. Admin installs operator in an `openshift-*` namespace that has a label asking the label syncher to not reconcile it -> nothing changes

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • Done only downstream
  • Transition documentation written and reviewed

Dependencies (internal and external)

  1. label syncher (still searching for the link)

Open questions::

  1. Is this only for openshift-* namespaces?

Resources

Stakeholders

  • Daniel S...?

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

As an admin, I would like openshift-* namespaces with an operator to be labeled with security.openshift.io/scc.podSecurityLabelSync=true to ensure the continual functioning of operators without manual intervention. The label should only be applied to openshift-* namespaces with an operator (the presence of a ClusterServiceVersion resource) IF the label is not already present. This automation will help smooth functioning of the cluster and avoid frivolous operational events.

Context: As part of the PSA migration period, Openshift will ship with the "label sync'er" - a controller that will automatically adjust PSA security profiles in response to the workloads present in the namespace. We can assume that not all operators (produced by Red Hat, the community or ISVs) will have successfully migrated their deployments in response to upstream PSA changes. The label sync'er will sync, by default, any namespace not prefixed with "openshift-", of which an explicit label (security.openshift.io/scc.podSecurityLabelSync=true) is required for sync.

A/C:
 - OLM operator has been modified (downstream only) to label any unlabelled "openshift-" namespace in which a CSV has been created
 - If a labeled namespace containing at least one non-copied csv becomes unlabelled, it should be relabelled 
 - The implementation should be done in a way to eliminate or minimize subsequent downstream sync work (it is ok to make slight architectural changes to the OLM operator in the upstream to enable this)

The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

As a SRE, I want hypershift operator to expose a metric when hosted control plane is ready. 

This should allow SRE to tune (or silence) alerts occurring while the hosted control plane is spinning up. 

 

 

The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

The Kube APIServer has a sidecar to output audit logs. We need similar sidecars for other APIServers that run on the control plane side. We also need to pass the same audit log policy that we pass to the KAS to these other API servers.

This epic tracks network tooling improvements for 4.12

New framework and process should be developed to make sharing network tools with devs, support and customers convenient. We are going to add some tools for ovn troubleshooting before ovn-k goes default, also some tools that we got from customer cases, and some more to help analyze and debug collected logs based on stable must-gather/sosreport format we get now thanks to 4.11 Epic.

Our estimation for this Epic is 1 engineer * 2 Sprints

WHY:
This epic is important to help improve the time it takes our customers and our team to understand an issue within the cluster.
A focus of this epic is to develop tools to quickly allow debugging of a problematic cluster. This is crucial for the engineering team to help us scale. We want to provide a tool to our customers to help lower the cognitive burden to get at a root cause of an issue.

 

Alert if any of the ovn controllers disconnected for a period of time from the southbound database using metric ovn_controller_southbound_database_connected.

The metric updates every 2 minutes so please be mindful of this when creating the alert.

If the controller is disconnected for 10 minutes, fire an alert.

DoD: Merged to CNO and tested by QE

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Come up with a consistent way to detect node down on OCP and hypershift. Current mechanism for OCP (probe port 9) does not work for hypershift, meaning, hypershift node down detection will be longer (~40 secs). We should aim to have a common mechanism for both. As well, we should consider alternatives to the probing port 9. Perhaps BFD, or other detection.
  • Get clarification on node down detection times. Some customers have (apparently) asked for detection on the order of 100ms, recommendation is to use multiple Egress IPs, so this may not be a hard requirement. Need clarification from PM/Customers.

Why is this important?

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Add sock proxy to cluster-network-operator so egressip can use grpc to reach worker nodes.
 
With the introduction of grpc as means for determining the state of a given egress node, hypershift should
be able to leverage socks proxy and become able to know the state of each egress node.
 
References relevant to this work:
1281-network-proxy
[+https://coreos.slack.com/archives/C01C8502FMM/p1658427627751939+]
[+https://github.com/openshift/hypershift/pull/1131/commits/28546dc587dc028dc8bded715847346ff99d65ea+]

This Epic is here to track the rebase we need to do when kube 1.25 is GA https://www.kubernetes.dev/resources/release/

Keeping this in mind can help us plan our time better. ATTOW GA is planned for August 23

https://docs.google.com/document/d/1h1XsEt1Iug-W9JRheQas7YRsUJ_NQ8ghEMVmOZ4X-0s/edit --> this is the link for rebase help

Incomplete Epics

This section includes Jira cards that are linked to an Epic, but the Epic itself is not linked to any Feature. These epics were not completed when this image was assembled

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Run OpenShift builds that do not execute as the "root" user on the host node.

Why is this important?

  • OpenShift builds require an elevated set of capabilities to build a container image
  • Builds currently run as root to maintain adequate performance
  • Container workloads should run as non-root from the host's perspective. Containers running as root are a known security risk.
  • Builds currently run as root and require a privileged container. See BUILD-225 for removing the privileged container requirement.

Scenarios

  1. Run BuildConfigs in a multi-tenant environment
  2. Run BuildConfigs in a heightened security environment/deployment

Acceptance Criteria

  • Developers can opt into running builds in a cri-o user namespace by providing an environment variable with a specific value.
  • When the correct environment variable is provided, builds run in a cri-o user namespace, and the build pod does not require the "privileged: true" security context.
  • User namespace builds can pass basic test scenarios for the Docker and Source strategy build.
  • Steps to run unprivileged builds are documented.

Dependencies (internal and external)

  1. Buildah supports running inside a non-privileged container
  2. CRI-O allows workloads to opt into running containers in user namespaces.

Previous Work (Optional):

  1. BUILD-225 - remove privileged requirement for builds.

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story

As a developer building container images on OpenShift
I want to specify that my build should run without elevated privileges
So that builds do not run as root from the host's perspective with elevated privileges

Acceptance Criteria

  • Developers can provide an environment variable to indicate the build should not use privileged containers
  • When the correct env var + value is specified, builds run in a user namespace (non-root on the host)

QE Impact

No QE required for Dev Preview. OpenShift regression testing will verify that existing behavior is not impacted.

Docs Impact

We will need to document how to enable this feature, with sufficient warnings regarding Dev Preview.

PX Impact

This likely warrants an OpenShift blog post, potentially?

Notes

Place holder epic to track spontaneous task which does not deserve its own epic.

Once the HostedCluster and NodePool gets stopped using PausedUntil statement, the awsprivatelink controller will continue reconciling.

 

How to test this:

  • Deploy a private cluster
  • Put it in pause once deployed
  • Delete the AWSEndPointService and the Service from the HCP namespace
  • And wait for a reconciliation, the result it's that they should not be recreated
  • Unpause it and wait for recreation.

AWS has a hard limit of 100 OIDC providers globally. 
Currently each HostedCluster created by e2e creates its own OIDC provider, which results in hitting the quota limit frequently and causing the tests to fail as a result.

 
DOD:
Only a single OIDC provider should be created and shared between all e2e HostedClusters. 

DoD:

At the moment if the input etcd kms encryption (key and role) is invalid we fail transparently.

We should check that both key and role are compatible/operational for a given cluster and fail in a condition otherwise

Changes made in METAL-1 open up opportunities to improve our handling of images by cleaning up redundant code that generates extra work for the user and extra load for the cluster.

We only need to run the image cache DaemonSet if there is a QCOW URL to be mirrored (effectively this means a cluster installed with 4.9 or earlier). We can stop deploying it for new clusters installed with 4.10 or later.

Currently, the image-customization-controller relies on the image cache running on every master to provide the shared hostpath volume containing the ISO and initramfs. The first step is to replace this with a regular volume and an init container in the i-c-c pod that extracts the images from machine-os-images. We can use the copy-metal -image-build flag (instead of -all used in the shared volume) to provide only the required images.

Once i-c-c has its own volume, we can switch the image extraction in the metal3 Pod's init container to use the -pxe flag instead of -all.

The machine-os-images init container for the image cache (not the metal3 Pod) can be removed. The whole image cache deployment is now optional and need only be started if provisioningOSDownloadURL is set (and in fact should be deleted if it is not).

Epic Goal

  • To improve the reliability of disk cleaning before installation and to provide the user with sufficient warning regarding the consequences of the cleaning

Why is this important?

  • Insufficient cleaning can lead to installation failure
  • Insufficient warning can lead to complaints of unexpected data loss

Scenarios

  1.  

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Description of the problem:
When running assisted-installer on a machine where is more than one volume group per physical volume. Only the first volume group will be cleaned up. This leads to problems later and will lead to errors such as

Failed - failed executing nsenter [--target 1 --cgroup --mount --ipc --pid -- pvremove /dev/sda -y -ff], Error exit status 5, LastOutput "Can't open /dev/sda exclusively. Mounted filesystem? 

How reproducible:

Set up a VM with more than one volume group per physical volume. As an example, look at the following sample from a customer cluster.

List block devices
/usr/bin/lsblk -o NAME,MAJ:MIN,SIZE,TYPE,FSTYPE,KNAME,MODEL,UUID,WWN,HCTL,VENDOR,STATE,TRAN,PKNAME
NAME              MAJ:MIN   SIZE TYPE FSTYPE      KNAME MODEL            UUID                                   WWN                HCTL       VENDOR   STATE   TRAN PKNAME
loop0               7:0   125.9G loop xfs         loop0                  c080b47b-2291-495c-8cc0-2009ebc39839                                                       
loop1               7:1   885.5M loop squashfs    loop1                                                                                                             
sda                 8:0   894.3G disk             sda   INTEL SSDSC2KG96                                        0x55cd2e415235b2db 1:0:0:0    ATA      running sas  
|-sda1              8:1     250M part             sda1                                                          0x55cd2e415235b2db                                  sda
|-sda2              8:2     750M part ext2        sda2                   3aa73c72-e342-4a07-908c-a8a49767469d   0x55cd2e415235b2db                                  sda
|-sda3              8:3      49G part xfs         sda3                   ffc3ccfe-f150-4361-8ae5-f87b17c13ac2   0x55cd2e415235b2db                                  sda
|-sda4              8:4   394.2G part LVM2_member sda4                   Ua3HOc-Olm4-1rma-q0Ug-PtzI-ZOWg-RJ63uY 0x55cd2e415235b2db                                  sda
`-sda5              8:5     450G part LVM2_member sda5                   W8JqrD-ZvaC-uNK9-Y03D-uarc-Tl4O-wkDdhS 0x55cd2e415235b2db                                  sda
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sda5
sdb                 8:16  894.3G disk             sdb   INTEL SSDSC2KG96                                        0x55cd2e415235b31b 1:0:1:0    ATA      running sas  
`-sdb1              8:17  894.3G part LVM2_member sdb1                   6ETObl-EzTd-jLGw-zVNc-lJ5O-QxgH-5wLAqD 0x55cd2e415235b31b                                  sdb
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sdb1
sdc                 8:32  894.3G disk             sdc   INTEL SSDSC2KG96                                        0x55cd2e415235b652 1:0:2:0    ATA      running sas  
`-sdc1              8:33  894.3G part LVM2_member sdc1                   pBuktx-XlCg-6Mxs-lddC-qogB-ahXa-Nd9y2p 0x55cd2e415235b652                                  sdc
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sdc1
sdd                 8:48  894.3G disk             sdd   INTEL SSDSC2KG96                                        0x55cd2e41521679b7 1:0:3:0    ATA      running sas  
`-sdd1              8:49  894.3G part LVM2_member sdd1                   exVSwU-Pe07-XJ6r-Sfxe-CQcK-tu28-Hxdnqo 0x55cd2e41521679b7                                  sdd
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sdd1
sr0                11:0     989M rom  iso9660     sr0   Virtual CDROM0   2022-06-17-18-18-33-00                                    0:0:0:0    AMI      running usb  

Now run the assisted installer and try to install an SNO node on this machine, you will find that the installation will fail with a message that indicates that it could not exclusively access /dev/sda

Actual results:

 The installation will fail with a message that indicates that it could not exclusively access /dev/sda

Expected results:

The installation should proceed and the cluster should start to install.

Suspected Cases
https://issues.redhat.com/browse/AITRIAGE-3809
https://issues.redhat.com/browse/AITRIAGE-3802
https://issues.redhat.com/browse/AITRIAGE-3810

Description of the problem:

Cluster Installation fail if installation disk has lvm on raid:

Host: test-infra-cluster-3cc862c9-master-0, reached installation stage Failed: failed executing nsenter [--target 1 --cgroup --mount --ipc --pid -- mdadm --stop /dev/md0], Error exit status 1, LastOutput "mdadm: Cannot get exclusive access to /dev/md0:Perhaps a running process, mounted filesystem or active volume group?" 

How reproducible:

100%

Steps to reproduce:

1. Install a cluster while master nodes has disk with LVM on RAID (reproduces using test: https://gitlab.cee.redhat.com/ocp-edge-qe/kni-assisted-installer-auto/-/blob/master/api_tests/test_disk_cleanup.py#L97)

Actual results:

Installation failed

Expected results:

Installation success

Epic Goal

  • Increase success-rate of of our CI jobs
  • Improve debugability / visibility or tests 

Why is this important?

  • Failed presubmit jobs (required or optional) can make an already tested+approved PR to not get in
  • Failed periodic jobs interfere our visibility around stability of features

Description of problem:

check_pkt_length cannot be offloaded without
1) sFlow offload patches in Openvswitch
2) Hardware driver support.

Since 1) will not be done anytime soon. We need a work around for the check_pkt_length issue.

Version-Release number of selected component (if applicable):

4.11/4.12

How reproducible:

Always

Steps to Reproduce:

1. Any flow that has check_pkt_len()
  5-b: Pod -> NodePort Service traffic (Pod Backend - Different Node)
  6-b: Pod -> NodePort Service traffic (Host Backend - Different Node)
  4-b: Pod -> Cluster IP Service traffic (Host Backend - Different Node)
  10-b: Host Pod -> Cluster IP Service traffic (Host Backend - Different Node)
  11-b: Host Pod -> NodePort Service traffic (Pod Backend - Different Node)
  12-b: Host Pod -> NodePort Service traffic (Host Backend - Different Node)   

Actual results:

Poor performance due to upcalls when check_pkt_len() is not supported.

Expected results:

Good performance.

Additional info:

https://docs.google.com/spreadsheets/d/1LHY-Af-2kQHVwtW4aVdHnmwZLTiatiyf-ySffC8O5NM/edit#gid=670206692

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • ...

Why is this important?

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

We have been running into a number of problems with configure-ovs and nodeip-configuration selecting different interfaces in OVNK deployments. This causes connectivity issues, so we need some way to ensure that everything uses the same interface/IP.

Currently configure-ovs runs before nodeip-configuration, but since nodeip-configuration is the source of truth for IP selection regardless of CNI plugin, I think we need to look at swapping that order. That way configure-ovs could look at what nodeip-configuration chose and not have to implement its own interface selection logic.

I'm targeting this at 4.12 because even though there's probably still time to get it in for 4.11, changing the order of boot services is always a little risky and I'd prefer to do it earlier in the cycle so we have time to tease out any issues that arise. We may need to consider backporting the change though since this has been an issue at least back to 4.10.

Goal
Provide an indication that advanced features are used

Problem

Today, customers and RH don't have the information on the actual usage of advanced features.

Why is this important?

  1. Better focus upsell efforts
  2. Compliance information for customers that are not aware they are not using the right subscription

 

Prioritized Scenarios

In Scope
1. Add a boolean variable in our telemetry to mark if the customer is using advanced features (PV encryption, encryption with KMS, external mode). 

Not in Scope

Integrate with subscription watch - will be done by the subscription watch team with our help.

Customers

All

Customer Facing Story
As a compliance manager, I should be able to easily see if all my clusters are using the right amount of subscriptions

What does success look like?

A clear indication in subscription watch for ODF usage (either essential or advanced). 

1. Proposed title of this feature request

  • Request to add a bool variable into telemetry which indicates the usage of any of the advanced feature, like PV encryption or KMS encryption or external mode etc.

2. What is the nature and description of the request?

  • Today, customers and RH don't have the information on the actual usage of advanced features. This feature will help RH to have a better indication on the statistics of customers using the advanced features and focus better on upsell efforts.

3. Why does the customer need this? (List the business requirements here)

  • As a compliance manager, I should be able to easily see if all my clusters are using the right amount of subscriptions.

4. List any affected packages or components.

  • Telemetry

_____________________

Link to main epic: https://issues.redhat.com/browse/RHSTOR-3173

 

Other Complete

This section includes Jira cards that are not linked to either an Epic or a Feature. These tickets were completed when this image was assembled

Description of problem:

  intra namespace allow network policy doesn't work after applying ingress&egress deny all network policy

Version-Release number of selected component (if applicable):

  OpenShift 4.10.12

How reproducible:

Always

Steps to Reproduce:
  1. Define deny all network policy for egress an ingress in a namespace:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: default-deny-all
spec:
  podSelector: {}
  policyTypes:
  - Ingress
  - Egress

2. Define the following network policy to allow the traffic between the pods in the namespace:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: allow-intra-namespace-001
spec:
  egress:
  - to:
    - podSelector: {}
  ingress:
  - from:
    - podSelector: {}
  podSelector: {}
  policyTypes:
  - Ingress
  - Egress 

3. Test the connectivity between two pods from the namespace.

Actual results:

   The connectivity is not allowed

Expected results:

  The connectivity should be allowed between pods from the same namespace.

Additional info:

  After performing a test and analyzing SDN flows for the namespace: 

sh-4.4# ovs-ofctl dump-flows -O OpenFlow13 br0 | grep --color 0x964376 
 cookie=0x0, duration=99375.342s, table=20, n_packets=14, n_bytes=588, priority=100,arp,in_port=21,arp_spa=10.128.2.20,arp_sha=00:00:0a:80:02:14/00:00:ff:ff:ff:ff actions=load:0x964376->NXM_NX_REG0[],goto_table:30
 cookie=0x0, duration=1681.845s, table=20, n_packets=11, n_bytes=462, priority=100,arp,in_port=24,arp_spa=10.128.2.23,arp_sha=00:00:0a:80:02:17/00:00:ff:ff:ff:ff actions=load:0x964376->NXM_NX_REG0[],goto_table:30
 cookie=0x0, duration=99375.342s, table=20, n_packets=135610, n_bytes=759239814, priority=100,ip,in_port=21,nw_src=10.128.2.20 actions=load:0x964376->NXM_NX_REG0[],goto_table:27
 cookie=0x0, duration=1681.845s, table=20, n_packets=2006, n_bytes=12684967, priority=100,ip,in_port=24,nw_src=10.128.2.23 actions=load:0x964376->NXM_NX_REG0[],goto_table:27
 cookie=0x0, duration=99375.342s, table=25, n_packets=0, n_bytes=0, priority=100,ip,nw_src=10.128.2.20 actions=load:0x964376->NXM_NX_REG0[],goto_table:27
 cookie=0x0, duration=1681.845s, table=25, n_packets=0, n_bytes=0, priority=100,ip,nw_src=10.128.2.23 actions=load:0x964376->NXM_NX_REG0[],goto_table:27
 cookie=0x0, duration=975.129s, table=27, n_packets=0, n_bytes=0, priority=150,reg0=0x964376,reg1=0x964376 actions=goto_table:30
 cookie=0x0, duration=99375.342s, table=70, n_packets=145260, n_bytes=11722173, priority=100,ip,nw_dst=10.128.2.20 actions=load:0x964376->NXM_NX_REG1[],load:0x15->NXM_NX_REG2[],goto_table:80
 cookie=0x0, duration=1681.845s, table=70, n_packets=2336, n_bytes=191079, priority=100,ip,nw_dst=10.128.2.23 actions=load:0x964376->NXM_NX_REG1[],load:0x18->NXM_NX_REG2[],goto_table:80
 cookie=0x0, duration=975.129s, table=80, n_packets=0, n_bytes=0, priority=150,reg0=0x964376,reg1=0x964376 actions=output:NXM_NX_REG2[]

We see that the following rule doesn't match because `reg1` hasn't been defined:

 cookie=0x0, duration=975.129s, table=27, n_packets=0, n_bytes=0, priority=150,reg0=0x964376,reg1=0x964376 actions=goto_table:30 

 

This is a clone of issue OCPBUGS-3278. The following is the description of the original issue:

Description of problem:

When doing openshift-install agent create image, one should not need to provide platform specific data like boot MAC addresses.

Version-Release number of selected component (if applicable):

4.12

How reproducible:

100%

Steps to Reproduce:

1.Create install-config with only VIPs in Baremetal platform section

apiVersion: v1
metadata:
  name: foo
baseDomain: test.metalkube.org
networking:
  clusterNetwork:
    - cidr: 10.128.0.0/14
      hostPrefix: 23
  machineNetwork:
    - cidr: 192.168.122.0/23
  networkType: OpenShiftSDN
  serviceNetwork:
    - 172.30.0.0/16
compute:
  - architecture: amd64
    hyperthreading: Enabled
    name: worker
    platform: {}
    replicas: 0
controlPlane:
  name: master
  replicas: 3
  hyperthreading: Enabled
  architecture: amd64
platform:
  baremetal:
    apiVIPs:
      - 192.168.122.10
    ingressVIPs:
      - 192.168.122.11
---
apiVersion: v1beta1
metadata:
  name: foo
rendezvousIP: 192.168.122.14

2.openshift-install agent create image

Actual results:

ERROR failed to write asset (Agent Installer ISO) to disk: cannot generate ISO image due to configuration errors 
ERROR failed to fetch Agent Installer ISO: failed to load asset "Install Config": failed to create install config: invalid "install-config.yaml" file: [platform.baremetal.hosts: Invalid value: []*baremetal.Host(nil): bare metal hosts are missing, platform.baremetal.Hosts: Required value: not enough hosts found (0) to support all the configured ControlPlane replicas (3)]

Expected results:

Image gets generated

Additional info:

We should go into install-config validation code, detect if we are doing agent-based installation and skip the hosts checks

This is a clone of issue OCPBUGS-10661. The following is the description of the original issue:

This is a clone of issue OCPBUGS-10591. The following is the description of the original issue:

Description of problem:

Starting with 4.12.0-0.nightly-2023-03-13-172313, the machine API operator began receiving an invalid version tag either due to a missing or invalid VERSION_OVERRIDE(https://github.com/openshift/machine-api-operator/blob/release-4.12/hack/go-build.sh#L17-L20) value being passed tot he build.

This is resulting in all jobs invoked by the 4.12 nightlies failing to install.

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2023-03-13-172313 and later

How reproducible:

consistently in 4.12 nightlies only(ci builds do not seem to be impacted).

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

Example of failure https://gcsweb-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/origin-ci-test/logs/periodic-ci-openshift-release-master-nightly-4.12-e2e-aws-csi/1635331349046890496/artifacts/e2e-aws-csi/gather-extra/artifacts/pods/openshift-machine-api_machine-api-operator-866d7647bd-6lhl4_machine-api-operator.log

Description of problem:

If a customer creates a machine with a networks section like this

networks:
- filter: {}
  noAllowedAddressPairs: false
  subnets:
  - filter: {}
    uuid: primary-subnet-uuid
- filter: {}
  noAllowedAddressPairs: true
  subnets:
  - filter: {}
    uuid: other-subnet-uuid
primarySubnet: primary-subnet-uuid

Then all the ports are created without the allowed address pairs.

Doing some research in the source code, I have found that:
- For each entry on the networks: section, networks are filtered as per its filter: section[1]
- Then, if the subnets: section of the network entry is not empty, for each of the network IDs found above[2], 2 things are done that are relevant for this situatoin:
  - The net ID is saved on a netsWithoutAllowedAddressPairs[3]. That map is later checked while creating any port[4].
  - For each subnet entry that matches the network ID, a port is created[5].

So, the problematic behavior happens due to the following:

- Both entries in the networks array have empty filters. This means that both entries selected all the neutron networks.
- This configuration results in one port per subnet as expected because, in the later traversal of the subnets array of each entry[5], it is filtering by subnet and creating a single port as expected.
- However, the entry with "noAllowedAddressPairs: true" is selecting all the neutron networks, so it adds all of them to the netsWithoutAllowedAddressPairs map[3], regardless of the subnets filtering.
- As all the networks are in noAllowedAddressPairs: true array, all the ports created for the VM have their allowed address pairs removed[4].

Why do we consider this behavior undesired?

I understand that, if we create a port for a network that has no allowed pairs, we create all the other ports in the same networks without the pairs. However, it is surprising that a port in a network is removed the allowed address pairs due to a setting in an entry that yielded no port on that network. In other words, one would expect that the same subnet filtering that happens on each network entry in what regards yielding ports for the VM would also work for the noAllowedPairs parameter.

Version-Release number of selected component (if applicable):

4.10.30

How reproducible:

Always

Steps to Reproduce:

1. Create a machineset like in the description
2.
3.

Actual results:

All ports have no address pairs

Expected results:

Only the port on the secondary subnet has no address pairs.

Additional info:

A simple workaround would be to just fill the filter so that a single network is selected for each network entry.

References:
[1] - https://github.com/openshift/cluster-api-provider-openstack/blob/f6b51710d4f395ded401347589447f5f41dd5c4c/pkg/cloud/openstack/clients/machineservice.go#L576
[2] - https://github.com/openshift/cluster-api-provider-openstack/blob/f6b51710d4f395ded401347589447f5f41dd5c4c/pkg/cloud/openstack/clients/machineservice.go#L580
[3] - https://github.com/openshift/cluster-api-provider-openstack/blob/f6b51710d4f395ded401347589447f5f41dd5c4c/pkg/cloud/openstack/clients/machineservice.go#L581-L583
[4] - https://github.com/openshift/cluster-api-provider-openstack/blob/f6b51710d4f395ded401347589447f5f41dd5c4c/pkg/cloud/openstack/clients/machineservice.go#L658-L660
[5] - https://github.com/openshift/cluster-api-provider-openstack/blob/f6b51710d4f395ded401347589447f5f41dd5c4c/pkg/cloud/openstack/clients/machineservice.go#L610-L625

This is a clone of issue OCPBUGS-3280. The following is the description of the original issue:

I have a script that does continuous installs using AGENT_E2E_TEST_SCENARIO=COMPACT_IPV4, just starting a new install after the previous one completes. What I'm seeing is that eventually I end up getting installation failures due to the container-images-available validation failure. What gets logged in wait-for bootstrap-complete is:

level=debug msg=Host master-0: New image status quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:0f6ddae72f6d730ca07a265691401571a8d8f7e62546f1bcda26c9a01628f4d6. result: failure. 

level=debug msg=Host master-0: validation 'container-images-available' that used to succeed is now failing
level=debug msg=Host master-0: updated status from preparing-for-installation to preparing-failed (Host failed to prepare for installation due to following failing validation(s): Failed to fetch container images needed for installation from quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:0f6ddae72f6d730ca07a265691401571a8d8f7e62546f1bcda26c9a01628f4d6. This may be due to a network hiccup. Retry to install again. If this problem persists, check your network settings to make sure you’re not blocked. ; Host couldn't synchronize with any NTP server)

Sometimes the image gets loaded onto the other masters OK and sometimes there are failures with more than one host. In either case the install stalls at this point.

When using a disconnected environment (MIRROR_IMAGES=true) I don't see this occurring.

Containers on host0
[core@master-0 ~]$ sudo podman ps
CONTAINER ID  IMAGE                                                                                                                   COMMAND               CREATED       STATUS           PORTS       NAMES
00a0eebb989c  localhost/podman-pause:4.2.0-1661537366                                                                                                       11 hours ago  Up 11 hours ago              cef65dd7f170-infra
5d0eced94979  quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:caa73897dcb9ff6bc00a4165f4170701f4bd41e36bfaf695c00461ec65a8d589  /bin/bash start_d...  11 hours ago  Up 11 hours ago              assisted-db
813bef526094  quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:caa73897dcb9ff6bc00a4165f4170701f4bd41e36bfaf695c00461ec65a8d589  /assisted-service     11 hours ago  Up 11 hours ago              service
edde1028a542  quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:e43558e28be8fbf6fe4529cf9f9beadbacbbba8c570ecf6cb81ae732ec01807f  next_step_runner ...  11 hours ago  Up 11 hours ago              next-step-runner

Some relevant logs from assisted-service for this container image:
time="2022-11-03T01:48:44Z" level=info msg="Submitting step <container-image-availability> id <container-image-availability-b72665b1> to infra_env <17c8b837-0130-4b8c-ad06-19bcd2a61dbf> host <df170326-772b-43b5-87ef-3dfff91ba1a9>  Arguments: <[{\"images\":[\"registry.ci.openshift.org/ocp/release:4.12.0-0.nightly-2022-10-25-210451\",\"quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:ca122ab3a82dfa15d72a05f448c48a7758a2c7b0ecbb39011235bcf0666fbc15\",\"quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:0f6ddae72f6d730ca07a265691401571a8d8f7e62546f1bcda26c9a01628f4d6\",\"quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:9e52a45b47cd9d70e7378811f4ba763fd43ec2580378822286c7115fbee6ef3a\"],\"timeout\":960}]>" func=github.com/openshift/assisted-service/internal/host/hostcommands.logSteps file="/src/internal/host/hostcommands/instruction_manager.go:285" go-id=841 host_id=df170326-772b-43b5-87ef-3dfff91ba1a9 infra_env_id=17c8b837-0130-4b8c-ad06-19bcd2a61dbf pkg=instructions request_id=47cc221f-4f47-4d0d-8278-c0f5af933567

time="2022-11-03T01:49:35Z" level=error msg="Received step reply <container-image-availability-9788cfa7> from infra-env <17c8b837-0130-4b8c-ad06-19bcd2a61dbf> host <845f1e3c-c286-4d2f-ba92-4c5cab953641> exit-code <2> stderr <> stdout <{\"images\":[

{\"name\":\"registry.ci.openshift.org/ocp/release:4.12.0-0.nightly-2022-10-25-210451\",\"result\":\"success\"}

,{\"download_rate\":159.65409925994226,\"name\":\"quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:ca122ab3a82dfa15d72a05f448c48a7758a2c7b0ecbb39011235bcf0666fbc15\",\"result\":\"success\",\"size_bytes\":523130669,\"time\":3.276650405},{\"name\":\"quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:0f6ddae72f6d730ca07a265691401571a8d8f7e62546f1bcda26c9a01628f4d6\",\"result\":\"failure\"},{\"download_rate\":278.8962416008878,\"name\":\"quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:9e52a45b47cd9d70e7378811f4ba763fd43ec2580378822286c7115fbee6ef3a\",\"result\":\"success\",\"size_bytes\":402688178,\"time\":1.443863767}]}>" func=github.com/openshift/assisted-service/internal/bminventory.logReplyReceived file="/src/internal/bminventory/inventory.go:3287" go-id=845 host_id=845f1e3c-c286-4d2f-ba92-4c5cab953641 infra_env_id=17c8b837-0130-4b8c-ad06-19bcd2a61dbf pkg=Inventory request_id=3a571ba6-5175-4bbe-b89a-20cdde30b884                         

time="2022-11-03T01:49:35Z" level=info msg="Adding new image status for quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:0f6ddae72f6d730ca07a265691401571a8d8f7e62546f1bcda26c9a01628f4d6 with status failure to host 845f1e3c-c286-4d2f-ba92-4c5cab953641" func="github.com/openshift/assisted-service/internal/host.(*Manager).UpdateImageStatus" file="/src/internal/host/host.go:805" pkg=host-state

 

Description of problem:

A cluster hit a panic in etcd operator in bootstrap:
I0829 14:46:02.736582 1 controller_manager.go:54] StaticPodStateController controller terminated
panic: runtime error: invalid memory address or nil pointer dereference
[signal SIGSEGV: segmentation violation code=0x1 addr=0x0 pc=0x1e940ab]

goroutine 2701 [running]:
github.com/openshift/cluster-etcd-operator/pkg/etcdcli.checkSingleMemberHealth({0x29374c0, 0xc00217d920}, 0xc0021fb110)
github.com/openshift/cluster-etcd-operator/pkg/etcdcli/health.go:135 +0x34b
github.com/openshift/cluster-etcd-operator/pkg/etcdcli.getMemberHealth.func1()
github.com/openshift/cluster-etcd-operator/pkg/etcdcli/health.go:58 +0x7f
created by github.com/openshift/cluster-etcd-operator/pkg/etcdcli.getMemberHealth
github.com/openshift/cluster-etcd-operator/pkg/etcdcli/health.go:54 +0x2ac
Version-Release number of selected component (if applicable):

 

How reproducible:

Pulled up a 4.12 cluster and hit panic during bootstrap

Steps to Reproduce:

1.
2.
3.

Actual results:

panic as above

Expected results:

no panic

Additional info:

 

As a developer, I would like to remove the random terraform provider because it is essentially unnecessary and would improve our build process.

 

The random Terraform provider is used in Azure & Azure Stack to create a random string. This could easily be done in go code and passed in as a variable. 

Removing an extra provider would decrease our build time and improve our build stability, which is often failing due to timeouts. 

 

The random string is used here in Azure (and similarly in Azure Stack):

https://github.com/openshift/installer/blob/master/data/data/azure/vnet/main.tf#L23-L27

 

One approach would be to generate the string in tfvars and pass it in as a terraform variable.

Description of problem:

The setting of systemReserved: ephemeral-storage in KubeletConfig is not working as expected. 

Version-Release number of selected component (if applicable):

4.10.z, may exist on other OCP versions as well. 

How reproducible:

always

Steps to Reproduce:

1. Create a KubeletConfig on the node:

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
  name: system-reserved-config
spec:
  machineConfigPoolSelector:
    matchLabels:
      pools.operator.machineconfiguration.openshift.io/master: ""
  kubeletConfig:
    systemReserved:
      cpu: 500m
      memory: 500Mi
      ephemeral-storage: 10Gi


2. Check node allocatable storage with command: oc describe node |grep -C 5 ephemeral-storage

Actual results:

The Allocatable:ephemeral-storage on the node is not capacity.ephemeral-storage - systemReserved.ephemeral-storage - eviction-thresholds (10% of the capacity.ephemeral-storage by default)  

Expected results:

The Allocatable:ephemeral-storage on the node should be capacity.ephemeral-storage - systemReserved.ephemeral-storage - eviction-thresholds (10% of the capacity.ephemeral-storage by default) 

Additional info:

The root cause might be: process argument '--system-reserved=cpu=500m,memory=500Mi' overwrote the setting in /etc/kubernetes/kubelet.conf, one example:

root        6824       1 27 Sep30 ?        1-09:00:24 kubelet --config=/etc/kubernetes/kubelet.conf --bootstrap-kubeconfig=/etc/kubernetes/kubeconfig --kubeconfig=/var/lib/kubelet/kubeconfig --container-runtime=remote --container-runtime-endpoint=/var/run/crio/crio.sock --runtime-cgroups=/system.slice/crio.service --node-labels=node-role.kubernetes.io/master,node.openshift.io/os_id=rhcos --node-ip=192.168.58.47 --minimum-container-ttl-duration=6m0s --cloud-provider= --volume-plugin-dir=/etc/kubernetes/kubelet-plugins/volume/exec --hostname-override= --register-with-taints=node-role.kubernetes.io/master=:NoSchedule --pod-infra-container-image=quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:4a7b6408460148cb73c59677dbc2c261076bc07226c43b0c9192cc70aef5ba62 --system-reserved=cpu=500m,memory=500Mi --v=2 --housekeeping-interval=30s


 

Description of problem:

In a 4.11 cluster with only openshift-samples enabled, the 4.12 introduced optional COs console and insights are installed. While upgrading to 4.12, CVO considers them to be disabled explicitly and skips reconciling them. So these COs are not upgraded to 4.12.

Installed COs cannot be disabled, so CVO is supposed to implicitly enable them.


$ oc get clusterversion -oyaml
{
  "apiVersion": "config.openshift.io/v1",
     "kind": "ClusterVersion",
     "metadata": {
         "creationTimestamp": "2022-09-30T05:02:31Z",
         "generation": 3,
         "name": "version",
         "resourceVersion": "134808",
         "uid": "bd95473f-ffda-402d-8fe3-74f852a9d6eb"
     },
     "spec": {
         "capabilities": {
             "additionalEnabledCapabilities": [
                 "openshift-samples"
             ],
             "baselineCapabilitySet": "None"
         },
         "channel": "stable-4.11",
         "clusterID": "8eda5167-a730-4b39-be1d-214a80506d34",
         "desiredUpdate": {
             "force": true,
             "image": "registry.ci.openshift.org/ocp/release@sha256:2c8e617830f84ac1ee1bfcc3581010dec4ae5d9cad7a54271574e8d91ef5ecbc",
             "version": ""
         }
     },
     "status": {
         "availableUpdates": null,
         "capabilities": {
             "enabledCapabilities": [
                 "openshift-samples"
             ],
             "knownCapabilities": [
                 "Console",
                 "Insights",
                 "Storage",
                 "baremetal",
                 "marketplace",
                 "openshift-samples"
             ]
         },
         "conditions": [
             {
                 "lastTransitionTime": "2022-09-30T05:02:33Z",
                 "message": "Unable to retrieve available updates: currently reconciling cluster version 4.12.0-0.nightly-2022-09-28-204419 not found in the \"stable-4.11\" channel",
                 "reason": "VersionNotFound",
                 "status": "False",
                 "type": "RetrievedUpdates"
             },
             {
                 "lastTransitionTime": "2022-09-30T05:02:33Z",
                 "message": "Capabilities match configured spec",
                 "reason": "AsExpected",
                 "status": "False",
                 "type": "ImplicitlyEnabledCapabilities"
             },
             {
                 "lastTransitionTime": "2022-09-30T05:02:33Z",
                 "message": "Payload loaded version=\"4.12.0-0.nightly-2022-09-28-204419\" image=\"registry.ci.openshift.org/ocp/release@sha256:2c8e617830f84ac1ee1bfcc3581010dec4ae5d9cad7a54271574e8d91ef5ecbc\" architecture=\"amd64\"",
                 "reason": "PayloadLoaded",
                 "status": "True",
                 "type": "ReleaseAccepted"
             },
             {
                 "lastTransitionTime": "2022-09-30T05:23:18Z",
                 "message": "Done applying 4.12.0-0.nightly-2022-09-28-204419",
                 "status": "True",
                 "type": "Available"
             },
             {
                 "lastTransitionTime": "2022-09-30T07:05:42Z",
                 "status": "False",
                 "type": "Failing"
             },
             {
                 "lastTransitionTime": "2022-09-30T07:41:53Z",
                 "message": "Cluster version is 4.12.0-0.nightly-2022-09-28-204419",
                 "status": "False",
                 "type": "Progressing"
             }
         ],
         "desired": {
             "image": "registry.ci.openshift.org/ocp/release@sha256:2c8e617830f84ac1ee1bfcc3581010dec4ae5d9cad7a54271574e8d91ef5ecbc",
             "version": "4.12.0-0.nightly-2022-09-28-204419"
         },
         "history": [
             {
                 "completionTime": "2022-09-30T07:41:53Z",
                 "image": "registry.ci.openshift.org/ocp/release@sha256:2c8e617830f84ac1ee1bfcc3581010dec4ae5d9cad7a54271574e8d91ef5ecbc",
                 "startedTime": "2022-09-30T06:42:01Z",
                 "state": "Completed",
                 "verified": false,
                 "version": "4.12.0-0.nightly-2022-09-28-204419"
             },
             {
                 "completionTime": "2022-09-30T05:23:18Z",
                 "image": "registry.ci.openshift.org/ocp/release@sha256:5a6f6d1bf5c752c75d7554aa927c06b5ea0880b51909e83387ee4d3bca424631",
                 "startedTime": "2022-09-30T05:02:33Z",
                 "state": "Completed",
                 "verified": false,
                 "version": "4.11.0-0.nightly-2022-09-29-191451"
             }
         ],
         "observedGeneration": 3,
         "versionHash": "CSCJ2fxM_2o="
     }
 }

$ oc get co
 NAME                                       VERSION                              AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
authentication                             4.12.0-0.nightly-2022-09-28-204419   True        False         False      93m     
cloud-controller-manager                   4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h56m   
cloud-credential                           4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h59m   
cluster-autoscaler                         4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h53m   
config-operator                            4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h54m   
console                                    4.11.0-0.nightly-2022-09-29-191451   True        False         False      3h45m   
control-plane-machine-set                  4.12.0-0.nightly-2022-09-28-204419   True        False         False      117m    
csi-snapshot-controller                    4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h54m   
dns                                        4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h53m   
etcd                                       4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h52m   
image-registry                             4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h46m   
ingress                                    4.12.0-0.nightly-2022-09-28-204419   True        False         False      151m    
insights                                   4.11.0-0.nightly-2022-09-29-191451   True        False         False      3h48m   
kube-apiserver                             4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h50m   
kube-controller-manager                    4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h51m   
kube-scheduler                             4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h51m   
kube-storage-version-migrator              4.12.0-0.nightly-2022-09-28-204419   True        False         False      91m     
machine-api                                4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h50m   
machine-approver                           4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h54m   
machine-config                             4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h52m   
monitoring                                 4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h44m   
network                                    4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h55m   
node-tuning                                4.12.0-0.nightly-2022-09-28-204419   True        False         False      113m    
openshift-apiserver                        4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h48m   
openshift-controller-manager               4.12.0-0.nightly-2022-09-28-204419   True        False         False      113m    
openshift-samples                          4.12.0-0.nightly-2022-09-28-204419   True        False         False      116m    
operator-lifecycle-manager                 4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h54m   
operator-lifecycle-manager-catalog         4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h54m   
operator-lifecycle-manager-packageserver   4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h48m   
service-ca                                 4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h54m   
storage                                    4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h54m 

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-09-28-204419

How reproducible:

Always

Steps to Reproduce:

1. Install a 4.11 cluster with only openshift-samples enabled
2. Upgrade to 4.12
3.

Actual results:

The 4.12 introduced optional CO console and insights are not upgraded to 4.12

Expected results:

All the installed COs get upgraded

Additional info:

 

Copied from an upstream issue: https://github.com/operator-framework/operator-lifecycle-manager/issues/2830

What did you do?

When attempting to reinstall an operator that uses conversion webhooks by

  • Deleting the operator subscription and any CSVs associated with it
  • Recreating the operator subscription

The resulting InstallPlan enters a failed state with message similar to

error validating existing CRs against new CRD's schema for "devworkspaces.workspace.devfile.io": error listing resources in GroupVersionResource schema.GroupVersionResource{Group:"workspace.devfile.io", Version:"v1alpha1", Resource:"devworkspaces"}: conversion webhook for workspace.devfile.io/v1alpha2, Kind=DevWorkspace failed: Post "https://devworkspace-controller-manager-service.test-namespace.svc:443/convert?timeout=30s": service "devworkspace-controller-manager-service" not found

When the original CSVs are deleted, the operator's main deployment and service are removed, but CRDs are left in-cluster. However, since the service/CA bundle/deployment that serve the conversion webhook are removed, conversion webhooks are broken at that point. Eventually this impacts garbage collection on the cluster as well.

This can be reproduced by installing the DevWorkspace Operator from the Red Hat catalog. (I can provide yamls/upstream images that reproduce as well, if that's helpful). It may be necessary to create a DevWorkspace in the cluster before deletion, e.g. by oc apply -f https://raw.githubusercontent.com/devfile/devworkspace-operator/main/samples/plain.yaml

What did you expect to see?
Operator is able to be reinstalled without removing CRDs and all instances.

What did you see instead? Under which circumstances?
It's necessary to completely remove the operator including CRDs. For our operator (DevWorkspace), this also makes uninstall especially complicated as finalizers are used (so CRDs cannot be deleted if the controller is removed, and the controller cannot be restored by reinstalling)

Environment

operator-lifecycle-manager version: 4.10.24

Kubernetes version information: Kubernetes Version: v1.23.5+012e945 (OpenShift 4.10.24)

Kubernetes cluster kind: OpenShift

When we create an HCP, the Root CA in the HCP namespaces has the certificate and key named as

  • ca.key
  • ca.crt
    But to cert manager expects them to be named as
  • tls.key
  • tls.cert

Done criteria: The Root CA should have the certificate and key named as the cert manager expects.

Description of problem:

The Console Operator has a suite of tests responsible for assuring that Console can successfully interact with Operators managed by OLM. The operator-hub.spec test references an operator no longer present in the 4.12 certified operators catalog source: https://github.com/openshift/console/blob/master/frontend/packages/operator-lifecycle-manager/integration-tests-cypress/tests/operator-hub.spec.ts#L64

OLM is unable to set the default catalog sources to the 4.12 image tag until the test is update to reference an operator in both the 4.11 and 4.12 images of the certified operators catalog source.


Version-Release number of selected component (if applicable):4.12


How reproducible: always


Steps to Reproduce:

1. Update the certified operators catalogSource images to the 4.12 tag
2. Attempt to run the operatorhub.spec test suite.

Actual results:

The test fails

Expected results:

The test passes

Additional info:


This is a clone of issue OCPBUGS-3214. The following is the description of the original issue:

Description of problem:

The installer has logic that avoids adding the router CAs to the kubeconfig if the console is not available.  It's not clear why it does this, but it means that the router CAs don't get added when the console is deliberately disabled (it is now an optional capability in 4.12).

Version-Release number of selected component (if applicable):

Seen in 4.12+4.13

How reproducible:

Always, when starting a cluster w/o the Console capability

Steps to Reproduce:

1. Edit the install-config to set:
capabilities:
  baselineCapabilitySet: None
2. install the cluster
3. check the CAs in the kubeconfig, the wildcard route CA will be missing (compare it w/ a normal cluster)

Actual results:

router CAs missing

Expected results:

router CAs should be present

Additional info:

This needs to be backported to 4.12.

The DVO metrics gatherer in the Insights operator relies on the "deployment-validation-operator" namespace name, but this is not very good, because the DVO can be installed in other namespaces (e.g it's installed in the "openshift-operators" namespace when installing through OperatorHub)

Description of problem:

Version-Release number of selected component (if applicable):

How reproducible:

Steps to Reproduce:
1. Go to the detail page of some Deployments with PDB connected to it
2. Click Edit PDB from the kebab menu
3. Inspect the second input box under the `Availability requirement `

Actual results: The name and aria-label attributes always show minAvailable

Expected results: They should be consistent with the first input box

Additional info:

This is a clone of issue OCPBUGS-3114. The following is the description of the original issue:

Description of problem:

When running a Hosted Cluster on Hypershift the cluster-networking-operator never progressed to Available despite all the components being up and running

Version-Release number of selected component (if applicable):

quay.io/openshift-release-dev/ocp-release:4.11.11-x86_64 for the hosted clusters
hypershift operator is quay.io/hypershift/hypershift-operator:4.11
4.11.9 management cluster

How reproducible:

Happened once

Steps to Reproduce:

1.
2.
3.

Actual results:

oc get co network reports False availability

Expected results:

oc get co network reports True availability

Additional info:

 

This is a clone of issue OCPBUGS-11257. The following is the description of the original issue:

This is a clone of issue OCPBUGS-9964. The following is the description of the original issue:

Description of problem:

egressip cannot be assigned on hypershift hosted cluster node

Version-Release number of selected component (if applicable):

4.13.0-0.nightly-2023-03-09-162945

How reproducible:

100%

Steps to Reproduce:

1. setup hypershift env


2. lable egress ip node on hosted cluster
% oc get node
NAME                                         STATUS   ROLES    AGE     VERSION
ip-10-0-129-175.us-east-2.compute.internal   Ready    worker   3h20m   v1.26.2+bc894ae
ip-10-0-129-244.us-east-2.compute.internal   Ready    worker   3h20m   v1.26.2+bc894ae
ip-10-0-141-41.us-east-2.compute.internal    Ready    worker   3h20m   v1.26.2+bc894ae
ip-10-0-142-54.us-east-2.compute.internal    Ready    worker   3h20m   v1.26.2+bc894ae

% oc label node/ip-10-0-129-175.us-east-2.compute.internal k8s.ovn.org/egress-assignable=""
node/ip-10-0-129-175.us-east-2.compute.internal labeled
% oc label node/ip-10-0-129-244.us-east-2.compute.internal k8s.ovn.org/egress-assignable=""
node/ip-10-0-129-244.us-east-2.compute.internal labeled
% oc label node/ip-10-0-141-41.us-east-2.compute.internal k8s.ovn.org/egress-assignable=""
node/ip-10-0-141-41.us-east-2.compute.internal labeled
% oc label node/ip-10-0-142-54.us-east-2.compute.internal  k8s.ovn.org/egress-assignable=""
node/ip-10-0-142-54.us-east-2.compute.internal labeled


3. create egressip
% cat egressip.yaml 
apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
  name: egressip-1
spec:
  egressIPs: [ "10.0.129.180" ]
  namespaceSelector:
    matchLabels:
      env: ovn-tests
% oc apply -f egressip.yaml 
egressip.k8s.ovn.org/egressip-1 created


4. check egressip assignment
             

Actual results:

egressip cannot assigned to node
% oc get egressip NAME         EGRESSIPS      ASSIGNED NODE   ASSIGNED EGRESSIPS egressip-1   10.0.129.180 

Expected results:

egressip can be assigned to one of the hosted cluster node

Additional info:

 

This is a clone of issue OCPBUGS-1704. The following is the description of the original issue:

Description of problem:

According to OCP 4.11 doc (https://docs.openshift.com/container-platform/4.11/installing/installing_gcp/installing-gcp-account.html#installation-gcp-enabling-api-services_installing-gcp-account), the Service Usage API (serviceusage.googleapis.com) is an optional API service to be enabled. But, the installation cannot succeed if this API is disabled.

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-09-25-071630

How reproducible:

Always, if the Service Usage API is disabled in the GCP project.

Steps to Reproduce:

1. Make sure the Service Usage API (serviceusage.googleapis.com) is disabled in the GCP project.
2. Try IPI installation in the GCP project. 

Actual results:

The installation would fail finally, without any worker machines launched.

Expected results:

Installation should succeed, or the OCP doc should be updated.

Additional info:

Please see the attached must-gather logs (http://virt-openshift-05.lab.eng.nay.redhat.com/jiwei/jiwei-0926-03-cnxn5/) and the sanity check results. 
FYI if enabling the API, and without changing anything else, the installation could succeed. 

Description of problem:

When the cluster install finished, wait-for install-complete command didn't exit as expected.

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1. Get the latest agent-installer and build image
git clone https://github.com/openshift/installer.git
cd installer/
hack/build.sh
Edit agent-config and install-config yaml file
Create the agent.iso image:
OPENSHIFT_INSTALL_RELEASE_IMAGE_OVERRIDE=quay.io/openshift-release-dev/ocp-release:4.12.0-ec.3-x86_64 bin/openshift-install agent create image --log-level debug

2. Install SNO cluster
virt-install --connect qemu:///system -n control-0 -r 33000 --vcpus 8 --cdrom ./agent.iso --disk pool=installer,size=120 --boot uefi,hd,cdrom --os-variant=rhel8.5 --network network=default,mac=52:54:00:aa:aa:aa --wait=-1 

3. Run 'bin/openshift agent wait-for bootstrap-complete --log-level debug' and the command finished as expected.

4. After 'bootstrap' completion, run 'bin/openshift agent wait-for install-complete --log-level debug', the command didn't finish as expected.

Actual results:

 

Expected results:

 

Additional info:

 

 Currently controller will set status done each time it sees host that is ready in k8s without looking if it was already set.

time="2022-09-13T19:03:45Z" level=info msg="Found new ready node ocp-2.cluster1.kpsalerno.us.ibm.com with inventory id 2da64d56-5057-78c6-ea6e-bf74a783bd79, kubernetes id 2da64d56-5057-78c6-ea6e-bf74a783bd79, updating its status to Done" func="github.com/openshift/assisted-installer/src/assisted_installer_controller.(*controller).waitAndUpdateNodesStatus" file="/remote-source/app/src/assisted_installer_controller/assisted_installer_controller.go:255" request_id=6258e5a2-4e78-4148-a913-45d704a0fa1d

time="2022-09-13T19:04:05Z" level=info msg="Found new ready node ocp-2.cluster1.kpsalerno.us.ibm.com with inventory id 2da64d56-5057-78c6-ea6e-bf74a783bd79, kubernetes id 2da64d56-5057-78c6-ea6e-bf74a783bd79, updating its status to Done" func="github.com/openshift/assisted-installer/src/assisted_installer_controller.(*controller).waitAndUpdateNodesStatus" file="/remote-source/app/src/assisted_installer_controller/assisted_installer_controller.go:255" request_id=49e4e63f-cf4f-4b9f-b1f3-923c473c09dd

 

 

With CSISnapshot capability is disabled, all CSI driver operators are Degraded. For example AWS EBS CSI driver operator during installation:

18:12:16.895: Some cluster operators are not ready: storage (Degraded=True AWSEBSCSIDriverOperatorCR_AWSEBSDriverStaticResourcesController_SyncError: AWSEBSCSIDriverOperatorCRDegraded: AWSEBSDriverStaticResourcesControllerDegraded: "volumesnapshotclass.yaml" (string): the server could not find the requested resource
AWSEBSCSIDriverOperatorCRDegraded: AWSEBSDriverStaticResourcesControllerDegraded: )
Ginkgo exit error 1: exit with code 1}

Version-Release number of selected component (if applicable):
4.12.nightly

The reason is that cluster-csi-snapshot-controller-operator does not create VolumeSnapshotClass CRD, which AWS EBS CSI driver operator expects to exist.

CSI driver operators must skip VolumeSnapshotClass creation if the CRD does not exist.

This is a clone of issue OCPBUGS-3114. The following is the description of the original issue:

Description of problem:

When running a Hosted Cluster on Hypershift the cluster-networking-operator never progressed to Available despite all the components being up and running

Version-Release number of selected component (if applicable):

quay.io/openshift-release-dev/ocp-release:4.11.11-x86_64 for the hosted clusters
hypershift operator is quay.io/hypershift/hypershift-operator:4.11
4.11.9 management cluster

How reproducible:

Happened once

Steps to Reproduce:

1.
2.
3.

Actual results:

oc get co network reports False availability

Expected results:

oc get co network reports True availability

Additional info:

 

Description of problem:

Seems ART is having trouble building OLM images: https://redhat-internal.slack.com/archives/CB95J6R4N/p1676531421724929

I've already fixed master: 
* https://github.com/openshift/cluster-policy-controller/pull/103
* https://github.com/openshift/cluster-policy-controller/pull/101

Need a bug to backport...

Version-Release number of selected component (if applicable):

4.12

How reproducible:

 

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

Description of problem:

If a master fails and is drained, the old copy of the metal3 pod gets stuck in Terminating state for some (possibly long) time. While the new pod works correctly, CBO expects only one port to exist and thus cannot determine the applicable Ironic IP address.

Version-Release number of selected component (if applicable):

 

How reproducible:

always

Steps to Reproduce:

1. On dev-scripts: virsh destroy <VM with metal3 pod>
2. Wait for drain to happen or trigger it manually
3. Check CBO logs

Actual results:

"unable to determine Ironic's IP to pass to the machine-image-customization-controller: there should be only one pod listed for the given label"

Expected results:

CBO reconfigures its pods with the new Ironic IP

Additional info:

I don't know how to filter out pods in Terminating state...

Description of problem:

service machine-config-daemon-update-rpmostree-via-container is failed to deploy commit

sh-4.4# journalctl -u machine-config-daemon-update-rpmostree-via-container.service | tail
Oct 12 11:45:56 master-00.wduan-1012e-upg.qe.devcluster.openshift.com peaceful_elbakyan[2022141]: Checking out tree 845113b...done
Oct 12 11:45:56 master-00.wduan-1012e-upg.qe.devcluster.openshift.com podman[2019123]: Checking out tree 845113b...done
Oct 12 11:45:57 master-00.wduan-1012e-upg.qe.devcluster.openshift.com peaceful_elbakyan[2022141]: error: No enabled repositories
Oct 12 11:45:57 master-00.wduan-1012e-upg.qe.devcluster.openshift.com podman[2019123]: error: No enabled repositories
Oct 12 11:45:57 master-00.wduan-1012e-upg.qe.devcluster.openshift.com peaceful_elbakyan[2022141]: error: Failed to deploy commit: ExitStatus(unix_wait_status(256))
Oct 12 11:45:57 master-00.wduan-1012e-upg.qe.devcluster.openshift.com podman[2019123]: error: Failed to deploy commit: ExitStatus(unix_wait_status(256))
Oct 12 11:45:57 master-00.wduan-1012e-upg.qe.devcluster.openshift.com podman[2022949]: time="2022-10-12T11:45:57Z" level=warning msg="lstat /sys/fs/cgroup/devices/machine.slice/libpod-ea744a45645d9c8d7a79182a78525a0b9f65b13e2e997f55bf80f626dcc0e945.scope: no such file or directory"
Oct 12 11:45:57 master-00.wduan-1012e-upg.qe.devcluster.openshift.com systemd[1]: machine-config-daemon-update-rpmostree-via-container.service: Main process exited, code=exited, status=1/FAILURE
Oct 12 11:45:57 master-00.wduan-1012e-upg.qe.devcluster.openshift.com systemd[1]: machine-config-daemon-update-rpmostree-via-container.service: Failed with result 'exit-code'.
Oct 12 11:45:57 master-00.wduan-1012e-upg.qe.devcluster.openshift.com systemd[1]: machine-config-daemon-update-rpmostree-via-container.service: Consumed 1min 9.080s CPU time 

full service log is attached

Version-Release number of selected component (if applicable):

4.12

Steps to Reproduce:

1. setup SNO cluster upi-on-baremetal with 4.11.8
2. upgrade it to 4.12.0-0.nightly-2022-10-05-053337

Actual results:

service machine-config-daemon-update-rpmostree-via-container is failed to deploy comment due to no enabled repositories issue

Expected results:

service machine-config-daemon-update-rpmostree-via-container can deploy new commit successfully

Additional info:

no proxy configured
sh-4.4# cat /etc/mco/proxy.env
# Proxy environment variables will be populated in this file. Properly
# url encoded passwords with special characters will use '%<HEX><HEX>'.
# Systemd requires that any % used in a password be represented as
# %% in a unit file since % is a prefix for macros; this restriction does not
# apply for environment files. Templates that need the proxy set should use
# 'EnvironmentFile=/etc/mco/proxy.env'.

We need to rebase openshift-sdn to kube 1.25's kube-proxy.

In particular, we need this to get https://github.com/kubernetes/kubernetes/pull/110334 into master because we will probably get asked to backport it.

This is a clone of issue OCPBUGS-855. The following is the description of the original issue:

Description of problem:

When setting the allowedregistries like the example below, the openshift-samples operator is degraded:

oc get image.config.openshift.io/cluster -o yaml
apiVersion: config.openshift.io/v1
kind: Image
metadata:
  annotations:
    release.openshift.io/create-only: "true"
  creationTimestamp: "2020-12-16T15:48:20Z"
  generation: 2
  name: cluster
  resourceVersion: "422284920"
  uid: d406d5a0-c452-4a84-b6b3-763abb51d7a5
spec:
  additionalTrustedCA:
    name: registry-ca
  allowedRegistriesForImport:
  - domainName: quay.io
    insecure: false
  - domainName: registry.redhat.io
    insecure: false
  - domainName: registry.access.redhat.com
    insecure: false
  - domainName: registry.redhat.io/redhat/redhat-operator-index
    insecure: true
  - domainName: registry.redhat.io/redhat/redhat-marketplace-index
    insecure: true
  - domainName: registry.redhat.io/redhat/certified-operator-index
    insecure: true
  - domainName: registry.redhat.io/redhat/community-operator-index
    insecure: true
  registrySources:
    allowedRegistries:
    - quay.io
    - registry.redhat.io
    - registry.rijksapps.nl
    - registry.access.redhat.com
    - registry.redhat.io/redhat/redhat-operator-index
    - registry.redhat.io/redhat/redhat-marketplace-index
    - registry.redhat.io/redhat/certified-operator-index
    - registry.redhat.io/redhat/community-operator-index


oc get co
NAME                                       VERSION   AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
authentication                             4.10.21   True        False         False      5d13h   
baremetal                                  4.10.21   True        False         False      450d    
cloud-controller-manager                   4.10.21   True        False         False      94d     
cloud-credential                           4.10.21   True        False         False      624d    
cluster-autoscaler                         4.10.21   True        False         False      624d    
config-operator                            4.10.21   True        False         False      624d    
console                                    4.10.21   True        False         False      42d     
csi-snapshot-controller                    4.10.21   True        False         False      31d     
dns                                        4.10.21   True        False         False      217d    
etcd                                       4.10.21   True        False         False      624d    
image-registry                             4.10.21   True        False         False      94d     
ingress                                    4.10.21   True        False         False      94d     
insights                                   4.10.21   True        False         False      104s    
kube-apiserver                             4.10.21   True        False         False      624d    
kube-controller-manager                    4.10.21   True        False         False      624d    
kube-scheduler                             4.10.21   True        False         False      624d    
kube-storage-version-migrator              4.10.21   True        False         False      31d     
machine-api                                4.10.21   True        False         False      624d    
machine-approver                           4.10.21   True        False         False      624d    
machine-config                             4.10.21   True        False         False      17d     
marketplace                                4.10.21   True        False         False      258d    
monitoring                                 4.10.21   True        False         False      161d    
network                                    4.10.21   True        False         False      624d    
node-tuning                                4.10.21   True        False         False      31d     
openshift-apiserver                        4.10.21   True        False         False      42d     
openshift-controller-manager               4.10.21   True        False         False      22d     
openshift-samples                          4.10.21   True        True          True       31d     Samples installation in error at 4.10.21: &errors.errorString{s:"global openshift image configuration prevents the creation of imagestreams using the registry "}
operator-lifecycle-manager                 4.10.21   True        False         False      624d    
operator-lifecycle-manager-catalog         4.10.21   True        False         False      624d    
operator-lifecycle-manager-packageserver   4.10.21   True        False         False      31d     
service-ca                                 4.10.21   True        False         False      624d    
storage                                    4.10.21   True        False         False      113d  


After applying the fix as described here(  https://access.redhat.com/solutions/6547281 ) it is resolved:
oc patch configs.samples.operator.openshift.io cluster --type merge --patch '{"spec": {"samplesRegistry": "registry.redhat.io"}}'

But according the the BZ this should be fixed in 4.10.3 https://bugzilla.redhat.com/show_bug.cgi?id=2027745 but the issue is still occur in our 4.10.21 cluster:

oc get clusterversion
NAME      VERSION   AVAILABLE   PROGRESSING   SINCE   STATUS
version   4.10.21   True        False         31d     Error while reconciling 4.10.21: the cluster operator openshift-samples is degraded

Version-Release number of selected component (if applicable):

 

How reproducible:

100%

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

I saw the following while trying to debug the following "unexpectedly found multiple equivalent ACLs" error.

Add a generic networkpolicy:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
name: allow-same-namespace
namespace: nbc9-demo-project
spec:
podSelector: {}
ingress:

  • from:
  • podSelector: {}
    policyTypes:
  • Ingress

$ kubectl get pod ovnkube-master-pk89w -o jsonpath='

{range .spec.containers[]} {@.image}

'
quay.io/openshift/okd-content@sha256:79ee71e045a7b224a132f6c75b4220ec35b9a06049061a6bd9ca9fc976c412e5

[root@dev-nkjpp-master-2 ~]# ovnkube -v
I0609 17:33:34.930787 58 ovs.go:93] Maximum command line arguments set to: 191102
Version: 0.3.0
Git commit: 7bf36eea28fe66365d0dfdf8c39e3311ea14d19b
Git branch: release-4.10
Go version: go1.16.6
Build date: 2022-05-27
OS/Arch: linux amd64

Which then fails to apply, retries, and when the networkpolicy is deleted, the ovnkube-master pod segfaults:

I0609 17:00:26.653710 1 policy.go:1092] Adding network policy allow-same-namespace in namespace nbc9-demo-project
E0609 17:00:26.656858 1 ovn.go:753] Failed to create network policy nbc9-demo-project/allow-same-namespace, error: failed to create default port groups and acls for policy: nbc9-demo-project/allow-same-namespace, error: unexpectedly found multiple equivalent ACLs: [

{UUID:7b55ba0c-150f-4a63-9601-cfde25f29408 Action:drop Direction:from-lport ExternalIDs:map[default-deny-policy-type:Egress] Label:0 Log:false Match:inport == @a7830797310894963783_egressDefaultDeny Meter:0xc0010df310 Name:0xc0010df320 Options:map[apply-after-lb:true] Priority:1000 Severity:0xc0010df330}

{UUID:60cb946a-46e9-4623-9ba4-3cb35f018ed6 Action:drop Direction:from-lport ExternalIDs:map[default-deny-policy-type:Egress] Label:0 Log:false Match:inport == @a7830797310894963783_egressDefaultDeny Meter:0xc0010df390 Name:0xc0010df3d0 Options:map[apply-after-lb:true] Priority:1000 Severity:0xc0010df3e0}

]
I0609 17:00:51.437895 1 policy_retry.go:46] Network Policy Retry: nbc9-demo-project/allow-same-namespace retry network policy setup
I0609 17:00:51.437935 1 policy_retry.go:63] Network Policy Retry: Creating new policy for nbc9-demo-project/allow-same-namespace
I0609 17:00:51.437941 1 policy.go:1092] Adding network policy allow-same-namespace in namespace nbc9-demo-project
I0609 17:00:51.438174 1 policy_retry.go:65] Network Policy Retry create failed for nbc9-demo-project/allow-same-namespace, will try again later: failed to create default port groups and acls for policy: nbc9-demo-project/allow-same-namespace, error: unexpectedly found multiple equivalent ACLs: [

{UUID:60cb946a-46e9-4623-9ba4-3cb35f018ed6 Action:drop Direction:from-lport ExternalIDs:map[default-deny-policy-type:Egress] Label:0 Log:false Match:inport == @a7830797310894963783_egressDefaultDeny Meter:0xc002215e00 Name:0xc002215e70 Options:map[apply-after-lb:true] Priority:1000 Severity:0xc002215e80}

{UUID:7b55ba0c-150f-4a63-9601-cfde25f29408 Action:drop Direction:from-lport ExternalIDs:map[default-deny-policy-type:Egress] Label:0 Log:false Match:inport == @a7830797310894963783_egressDefaultDeny Meter:0xc0022b0310 Name:0xc0022b03a0 Options:map[apply-after-lb:true] Priority:1000 Severity:0xc000070ab0}

]
I0609 17:01:02.679219 1 policy.go:1174] Deleting network policy allow-same-namespace in namespace nbc9-demo-project

E0609 17:01:02.679407 1 runtime.go:78] Observed a panic: "invalid memory address or nil pointer dereference" (runtime error: invalid memory address or nil pointer dereference)
goroutine 249 [running]:
k8s.io/apimachinery/pkg/util/runtime.logPanic(0x1c19c80, 0x2e9a810)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/apimachinery/pkg/util/runtime/runtime.go:74 +0x95
k8s.io/apimachinery/pkg/util/runtime.HandleCrash(0x0, 0x0, 0x0)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/apimachinery/pkg/util/runtime/runtime.go:48 +0x86
panic(0x1c19c80, 0x2e9a810)
/usr/lib/golang/src/runtime/panic.go:965 +0x1b9
github.com/ovn-org/ovn-kubernetes/go-controller/pkg/ovn.(*Controller).destroyNetworkPolicy(0xc0022c2000, 0x0, 0xc000bb9000, 0x0, 0x0)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/pkg/ovn/policy.go:1210 +0x55
github.com/ovn-org/ovn-kubernetes/go-controller/pkg/ovn.(*Controller).deleteNetworkPolicy(0xc0022c2000, 0xc002544f00, 0x0, 0x0, 0x0)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/pkg/ovn/policy.go:1198 +0x43f
github.com/ovn-org/ovn-kubernetes/go-controller/pkg/ovn.(*Controller).WatchNetworkPolicy.func4(0x1e7e840, 0xc002544f00)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/pkg/ovn/ovn.go:800 +0xae
k8s.io/client-go/tools/cache.ResourceEventHandlerFuncs.OnDelete(...)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/client-go/tools/cache/controller.go:245
k8s.io/client-go/tools/cache.FilteringResourceEventHandler.OnDelete(0xc000f4c4c0, 0x2160f10, 0xc002f498c0, 0x1e7e840, 0xc002544f00)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/client-go/tools/cache/controller.go:288 +0x6a
github.com/ovn-org/ovn-kubernetes/go-controller/pkg/factory.(*Handler).OnDelete(...)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/pkg/factory/handler.go:52
github.com/ovn-org/ovn-kubernetes/go-controller/pkg/factory.(*informer).newFederatedHandler.func3.1(0xc00463dbf0)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/pkg/factory/handler.go:340 +0x65
github.com/ovn-org/ovn-kubernetes/go-controller/pkg/factory.(*informer).forEachHandler(0xc0002c61b0, 0x1e7e840, 0xc002544f00, 0xc003dc9d60)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/pkg/factory/handler.go:114 +0x156
github.com/ovn-org/ovn-kubernetes/go-controller/pkg/factory.(*informer).newFederatedHandler.func3(0x1e7e840, 0xc002544f00)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/pkg/factory/handler.go:339 +0x1b2
k8s.io/client-go/tools/cache.ResourceEventHandlerFuncs.OnDelete(...)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/client-go/tools/cache/controller.go:245
k8s.io/client-go/tools/cache.(*processorListener).run.func1()
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/client-go/tools/cache/shared_informer.go:779 +0x166
k8s.io/apimachinery/pkg/util/wait.BackoffUntil.func1(0xc002367760)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:155 +0x5f
k8s.io/apimachinery/pkg/util/wait.BackoffUntil(0xc003dc9f60, 0x2127a00, 0xc000229a70, 0x1bd5d01, 0xc000039740)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:156 +0x9b
k8s.io/apimachinery/pkg/util/wait.JitterUntil(0xc002367760, 0x3b9aca00, 0x0, 0x1, 0xc000039740)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:133 +0x98
k8s.io/apimachinery/pkg/util/wait.Until(...)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:90
k8s.io/client-go/tools/cache.(*processorListener).run(0xc0004f3180)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/client-go/tools/cache/shared_informer.go:771 +0x95
k8s.io/apimachinery/pkg/util/wait.(*Group).Start.func1(0xc0002bed80, 0xc000ed5850)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:73 +0x51
created by k8s.io/apimachinery/pkg/util/wait.(*Group).Start
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:71 +0x65
panic: runtime error: invalid memory address or nil pointer dereference [recovered]
panic: runtime error: invalid memory address or nil pointer dereference
[signal SIGSEGV: segmentation violation code=0x1 addr=0x0 pc=0x1a021d5]

goroutine 249 [running]:
k8s.io/apimachinery/pkg/util/runtime.HandleCrash(0x0, 0x0, 0x0)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/apimachinery/pkg/util/runtime/runtime.go:55 +0x109
panic(0x1c19c80, 0x2e9a810)
/usr/lib/golang/src/runtime/panic.go:965 +0x1b9
github.com/ovn-org/ovn-kubernetes/go-controller/pkg/ovn.(*Controller).destroyNetworkPolicy(0xc0022c2000, 0x0, 0xc000bb9000, 0x0, 0x0)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/pkg/ovn/policy.go:1210 +0x55
github.com/ovn-org/ovn-kubernetes/go-controller/pkg/ovn.(*Controller).deleteNetworkPolicy(0xc0022c2000, 0xc002544f00, 0x0, 0x0, 0x0)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/pkg/ovn/policy.go:1198 +0x43f
github.com/ovn-org/ovn-kubernetes/go-controller/pkg/ovn.(*Controller).WatchNetworkPolicy.func4(0x1e7e840, 0xc002544f00)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/pkg/ovn/ovn.go:800 +0xae
k8s.io/client-go/tools/cache.ResourceEventHandlerFuncs.OnDelete(...)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/client-go/tools/cache/controller.go:245
k8s.io/client-go/tools/cache.FilteringResourceEventHandler.OnDelete(0xc000f4c4c0, 0x2160f10, 0xc002f498c0, 0x1e7e840, 0xc002544f00)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/client-go/tools/cache/controller.go:288 +0x6a
github.com/ovn-org/ovn-kubernetes/go-controller/pkg/factory.(*Handler).OnDelete(...)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/pkg/factory/handler.go:52
github.com/ovn-org/ovn-kubernetes/go-controller/pkg/factory.(*informer).newFederatedHandler.func3.1(0xc00463dbf0)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/pkg/factory/handler.go:340 +0x65
github.com/ovn-org/ovn-kubernetes/go-controller/pkg/factory.(*informer).forEachHandler(0xc0002c61b0, 0x1e7e840, 0xc002544f00, 0xc003dc9d60)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/pkg/factory/handler.go:114 +0x156
github.com/ovn-org/ovn-kubernetes/go-controller/pkg/factory.(*informer).newFederatedHandler.func3(0x1e7e840, 0xc002544f00)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/pkg/factory/handler.go:339 +0x1b2
k8s.io/client-go/tools/cache.ResourceEventHandlerFuncs.OnDelete(...)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/client-go/tools/cache/controller.go:245
k8s.io/client-go/tools/cache.(*processorListener).run.func1()
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/client-go/tools/cache/shared_informer.go:779 +0x166
k8s.io/apimachinery/pkg/util/wait.BackoffUntil.func1(0xc002367760)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:155 +0x5f
k8s.io/apimachinery/pkg/util/wait.BackoffUntil(0xc003dc9f60, 0x2127a00, 0xc000229a70, 0x1bd5d01, 0xc000039740)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:156 +0x9b
k8s.io/apimachinery/pkg/util/wait.JitterUntil(0xc002367760, 0x3b9aca00, 0x0, 0x1, 0xc000039740)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:133 +0x98
k8s.io/apimachinery/pkg/util/wait.Until(...)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:90
k8s.io/client-go/tools/cache.(*processorListener).run(0xc0004f3180)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/client-go/tools/cache/shared_informer.go:771 +0x95
k8s.io/apimachinery/pkg/util/wait.(*Group).Start.func1(0xc0002bed80, 0xc000ed5850)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:73 +0x51
created by k8s.io/apimachinery/pkg/util/wait.(*Group).Start
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:71 +0x65

Please let me know if any further information is required. I have a must-gather for this cluster but the file attachment tool in bugzilla won't let me attach anything larger than 19.5MB (the must-gather is 212.1MB)

This is a clone of issue OCPBUGS-3316. The following is the description of the original issue:

Description of problem:

Branch name in repository pipelineruns list view should match the actual github branch name.

Version-Release number of selected component (if applicable):

4.11.z

How reproducible:

alwaus

Steps to Reproduce:

1. Create a repository
2. Trigger the pipelineruns by push or pull request event on the github 

Actual results:

Branch name contains "refs-heads-" prefix in front of the actual branch name eg: "refs-heads-cicd-demo" (cicd-demo is the branch name)

Expected results:

Branch name should be the acutal github branch name. just `cicd-demo`should be shown in the branch column.

 

Additional info:
Ref: https://coreos.slack.com/archives/CHG0KRB7G/p1667564311865459

Description of problem:
Follow-up of: https://issues.redhat.com/browse/SDN-2988

This failure is perma-failing in the e2e-metal-ipi-ovn-dualstack-local-gateway jobs.

Example: https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/periodic-ci-openshift-release-master-nightly-4.13-e2e-metal-ipi-ovn-dualstack-local-gateway/1597574181430497280
Search CI: https://search.ci.openshift.org/?search=when+using+openshift+ovn-kubernetes+should+ensure+egressfirewall+is+created&maxAge=336h&context=1&type=junit&name=e2e-metal-ipi-ovn-dualstack-local-gateway&excludeName=&maxMatches=5&maxBytes=20971520&groupBy=job
Sippy: https://sippy.dptools.openshift.org/sippy-ng/jobs/4.13/analysis?filters=%7B%22items%22%3A%5B%7B%22columnField%22%3A%22name%22%2C%22operatorValue%22%3A%22equals%22%2C%22value%22%3A%22periodic-ci-openshift-release-master-nightly-4.13-e2e-metal-ipi-ovn-dualstack-local-gateway%22%7D%5D%7D

Version-Release number of selected component (if applicable):

4.12,4.13

How reproducible:

Every time

Steps to Reproduce:

1. Setup dualstack KinD cluster
2. Create egress fw policy with spec
Spec:
  Egress:
    To:
      Cidr Selector:  0.0.0.0/0
    Type:             Deny
3. create a pod and ping to 1.1.1.1

Actual results:

Egress policy does not block flows to external IP

Expected results:

Egress policy blocks flows to external IP

Additional info:

It seems mixing ip4 and ip6 operands in ACL matchs doesnt work

Description of problem:

Currently in 4.11, MAPI nutanix machine-controller does not provide the machine (VM)’s instance-type, region, zone, etc. labels to the Machine CR. And these columns are empty when viewing the Machine CRs, via cli “oc get Machine” or from the OCP cluster web console. 
$ oc -n openshift-machine-api get machine 
NAME                                  PHASE      TYPE REGION ZONE   AGE 
demo-ocp-cluster-g1-77nws-master-0   Running                        133m 
demo-ocp-cluster-g1-77nws-master-1   Running                        133m 
demo-ocp-cluster-g1-77nws-master-2   Running                        133m 
demo-ocp-cluster-g1-77nws-worker-2bsxn Running                      129m 
demo-ocp-cluster-g1-77nws-worker-75hr5 Running                      129m 
demo-ocp-cluster-g1-77nws-worker-rg7b9 Running                      129m

We can add something like the below labels to the Machine CR in the mapi-nutanix when reconciling for the Machine CRs: 
machine.openshift.io/instance-type: AHV 
machine.openshift.io/region: <prism-central-address> 
machine.openshift.io/zone: <prism-element-name/uuid>

Version-Release number of selected component (if applicable):

 

How reproducible:

run cli “oc get Machine” or from the OCP cluster web console to view the Machines resource

Steps to Reproduce:

1.
2.
3.

Actual results:

The "Type", "Region", "Zone" columns are empty for each Machine CR.

Expected results:

The "Type", "Region", "Zone" columns showing data for each Machine CR.

Additional info:

 

This is a clone of issue OCPBUGS-3032. The following is the description of the original issue:

If installation fails at an early stage (e.g. pulling release images, configuring hosts, waiting for agents to come up) there is no indication that anything has gone wrong, and the installer binary may not even be able to connect.
We should at least display what is happening on the console so that users have some avenue to figure out for themselves what is going on.

This is a clone of issue OCPBUGS-3358. The following is the description of the original issue:

Description of problem:
Due to changes in BUILD-407 which merged into release-4.12, we have a permafailing test `e2e-aws-csi-driver-no-refreshresource` and are unable to merge subsequent pull requests.

Version-Release number of selected component (if applicable):


How reproducible: Always

Steps to Reproduce:

1. Bring up cluster using release-4.12 or release-4.13 or master branch
2. Run `e2e-aws-csi-driver-no-refreshresource` test
3.

Actual results:
I1107 05:18:31.131666 1 mount_linux.go:174] Cannot run systemd-run, assuming non-systemd OS
I1107 05:18:31.131685 1 mount_linux.go:175] systemd-run failed with: exit status 1
I1107 05:18:31.131702 1 mount_linux.go:176] systemd-run output: System has not been booted with systemd as init system (PID 1). Can't operate.
Failed to create bus connection: Host is down

Expected results:
Test should pass

Additional info:


This is a clone of issue OCPBUGS-1327. The following is the description of the original issue:

See this comment for some updated information

Description of problem:
During IPI installation on IBM Cloud (x86_64), some of the worker machines have been seen to have no network connectivity during their initial bootup. Investigations were performed with IBM Cloud VPC to attempt to identify the issue, but in all appearances, all virtualization appears to be working.

Unfortunately due to this issue, no network traffic, no access to these worker machines is available to help identify the issue (Ignition is stuck without network traffic), so no SSH or console login is available to collect logs, or perform any testing on these machines.

The only content available is the console output, showing ignition is stuck due to the network issue.

Version-Release number of selected component (if applicable):
4.12.0

How reproducible:
About 60%

Steps to Reproduce:
1. Create an IPI cluster on IBM Cloud
2. Wait for the worker machines to be provisioned, causing IPI to fail waiting on machine-api operator
3. Check console of worker machines failing to report in to cluster (in this case 2 of 3 failed)

Actual results:
IPI creation failed waiting on machine-api operator to complete all worker node deployment

Expected results:
Successful IPI creation on IBM Cloud

Additional info:
As stated, investigation was performed by IBM Cloud VPC, but no further investigation could be performed since no access to these worker machines is available. Any further details that could be provided to help identify the issue would be helpful.

This appears to have become more prominent recently as well, causing concern for IBM Cloud's IPI GA support on the 4.12 release.

The only solution to restore network connectivity is rebooting the machine, which loses ignition bring up (I assume it must be triggered manually now), and in the case of IPI, isn't a great mitigation.

For the disconnected installation , we should not be able to provision machines successfully with publicIP:true , this has been the behavior earlier till -
4.11 and around 17th Aug nightly released 4.12 , but it has started allowing creation of machines with publicIP:true set in machineset

Issue reproduced on - Cluster version - 4.12.0-0.nightly-2022-08-23-223922

It is always reproducible .

Steps :
Create machineset using yaml with 
{"spec":{"providerSpec":{"value":{"publicIP": true}}}}

Machineset created successfully and machine provisioned successfully .

This seems to be regression bug refer - https://bugzilla.redhat.com/show_bug.cgi?id=1889620

Here is the must gather log - https://drive.google.com/file/d/1UXjiqAx7obISTxkmBsSBuo44ciz9HD1F/view?usp=sharing

Here is the test successfully ran for 4.11 , for exactly same profile and machine creation failed with InvalidConfiguration Error- https://mastern-jenkins-csb-openshift-qe.apps.ocp-c1.prod.psi.redhat.com/job/ocp-common/job/Runner/575822/console

We can confirm disconnected cluster using below  there would be lot of mirrors used in those - 

oc get ImageContentSourcePolicy image-policy-aosqe -o yaml 

apiVersion: operator.openshift.io/v1alpha1
kind: ImageContentSourcePolicy
metadata:
  creationTimestamp: "2022-08-24T09:08:47Z"
  generation: 1
  name: image-policy-aosqe
  resourceVersion: "34648"
  uid: 20e45d6d-e081-435d-b6bb-16c4ca21c9d6
spec:
  repositoryDigestMirrors:
  - mirrors:
    - miyadav-2408a.mirror-registry.qe.azure.devcluster.openshift.com:6001/olmqe
    source: quay.io/olmqe
  - mirrors:
    - miyadav-2408a.mirror-registry.qe.azure.devcluster.openshift.com:6001/openshifttest
    source: quay.io/openshifttest
  - mirrors:
    - miyadav-2408a.mirror-registry.qe.azure.devcluster.openshift.com:6001/openshift-qe-optional-operators
    source: quay.io/openshift-qe-optional-operators
  - mirrors:
    - miyadav-2408a.mirror-registry.qe.azure.devcluster.openshift.com:6002
    source: registry.redhat.io
  - mirrors:
    - miyadav-2408a.mirror-registry.qe.azure.devcluster.openshift.com:6002
    source: registry.stage.redhat.io
  - mirrors:
    - miyadav-2408a.mirror-registry.qe.azure.devcluster.openshift.com:6002
    source: brew.registry.redhat.io

 

 

This is a clone of issue OCPBUGS-3761. The following is the description of the original issue:

Description of problem:

Events.Events: event view displays created pod
https://search.ci.openshift.org/?search=event+view+displays+created+pod&maxAge=168h&context=1&type=junit&name=pull-ci-openshift-console-master-e2e-gcp-console&excludeName=&maxMatches=5&maxBytes=20971520&groupBy=job

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1.Run event scenario tests and note below results: 

Actual results:

{Expected '' to equal 'test-vjxfx-event-test-pod'. toEqual Error: Failed expectation
    at /go/src/github.com/openshift/console/frontend/integration-tests/tests/event.scenario.ts:65:72
    at Generator.next (<anonymous>:null:null)
    at fulfilled (/go/src/github.com/openshift/console/frontend/integration-tests/tests/event.scenario.ts:5:58)
    at runMicrotasks (<anonymous>:null:null)
    at processTicksAndRejections (internal/process/task_queues.js:93:5)
   }

Expected results:

 

Additional info:

 

This is a clone of issue OCPBUGS-5164. The following is the description of the original issue:

Description of problem:

It looks like the ODC doesn't register KNATIVE_SERVING and KNATIVE_EVENTING flags. Those are based on KnativeServing and KnativeEventing CRs, but they are looking for v1alpha1 version of those: https://github.com/openshift/console/blob/f72519fdf2267ad91cc0aa51467113cc36423a49/frontend/packages/knative-plugin/console-extensions.json#L6-L8
This PR https://github.com/openshift-knative/serverless-operator/pull/1695 moved the CRs to v1beta1, and that breaks that ODC discovery.

Version-Release number of selected component (if applicable):

Openshift 4.8, Serverless Operator 1.27

Additional info:

https://coreos.slack.com/archives/CHGU4P8UU/p1671634903447019

 

Description of problem:

Restore size in snapshot output is not the same size of pvc request size 

Version-Release number of selected component (if applicable):

 

How reproducible:

Always

Steps to Reproduce:

1. Create IBM cluster. 
    Flexy template: aos-4_12/ipi-on-ibmcloud/versioned-installer-  
                    private_cluster-ovn-fips-ci
    Payload: 4.12.0-0.nightly-2022-11-29-131548 
2. Create sc, pvc, dep
3. Create volumesnapshot from default volumesnapshotclass. 
4. Check the volumesnapshot output restore size 

sc_pvc_dep.yaml
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: mysc
parameters:
profile: 10iops-tier
provisioner: vpc.block.csi.ibm.io
reclaimPolicy: Delete
volumeBindingMode: WaitForFirstConsumer

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: mypvc-csi
namespace: testropatil
spec:
accessModes:

  • ReadWriteOnce
    resources:
    requests:
    storage: 26Gi
    storageClassName: mysc
    volumeMode: Filesystem

    apiVersion: apps/v1
    kind: Deployment
    metadata:
    name: mydep
    namespace: testropatil
    spec:
    replicas: 1
    selector:
    matchLabels:
    app: myapp-54mtso67
    template:
    metadata:
    labels:
    app: myapp-54mtso67
    spec:
    containers:
  • image: quay.io/openshifttest/hello-openshift@sha256:56c354e7885051b6bb4263f9faa58b2c292d44790599b7dde0e49e7c466cf339
    name: mydep
    ports:
  • containerPort: 80
    volumeMounts:
  • mountPath: "/mnt/storage"
    name: local
    volumes:
  • name: local
    persistentVolumeClaim:
    claimName: mypvc-csi
     
    vss.yaml
    apiVersion: snapshot.storage.k8s.io/v1
    kind: VolumeSnapshot
    metadata:
    name: my-snapshot-new
    namespace: testropatil
    spec:
    source:
    persistentVolumeClaimName: mypvc-csi
    volumeSnapshotClassName: vpc-block-snapshot
    rohitpatil@ropatil-mac Downloads % oc get sc                           NAME                                   PROVISIONER            RECLAIMPOLICY   VOLUMEBINDINGMODE      ALLOWVOLUMEEXPANSION   AGEmysc                                   vpc.block.csi.ibm.io   Delete          WaitForFirstConsumer   true                   2m37s
    rohitpatil@ropatil-mac Downloads % oc get pvc,pod -n testropatilNAME                              STATUS   VOLUME                                     CAPACITY   ACCESS MODES   STORAGECLASS   AGEpersistentvolumeclaim/mypvc-csi   Bound    pvc-1a014601-8176-4c55-93cf-d408460b9359   26Gi       RWO            mysc           27s
    NAME                         READY   STATUS    RESTARTS   AGEpod/mydep-5477fd946b-w77sw   1/1     Running   0          27s 
    rohitpatil@ropatil-mac Downloads % oc get volumesnapshot -n testropatilNAME              READYTOUSE   SOURCEPVC   SOURCESNAPSHOTCONTENT   RESTORESIZE   SNAPSHOTCLASS        SNAPSHOTCONTENT                                    CREATIONTIME   AGEmy-snapshot-new   true         mypvc-csi                           1Gi           vpc-block-snapshot   snapcontent-a40f3a17-8697-4215-8a2f-77d3d5592c60   29s            32s 

    Actual results:

    volumesnapshot RESTORESIZE is 1Gi which is not the same to pvc request size(26Gi)

    Expected results:

    volumesnapshot should be the same size of pvc request size

    Additional info:

     

Assisted installations default to setting platform: baremetal. Using the ReST API, it is possible to select vsphere (or ovirt) as the platform type. In every case, the actual platform data is filled in by assisted-service, and cannot be specified by the user.

The ClusterDeployment resource (from Hive) contains a Platform field. We could look for a platform specified in this field and set that platform when creating the cluster in the create-cluster-and-infraenv service. If ZTP were ever to support other deployment methods, this would probably be a good choice for that also.

We should probably warn the user if they attempt to put any data inside the platform settings, as this will be ignored. This shouldn't be an error, though, as it would prevent users from using existing install configs. Perhaps it should be an error if they specify a platform we don't support.

 

Note: https://issues.redhat.com/browse/AGENT-284?focusedCommentId=21019997&page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel#comment-21019997 

[Pawan]: We can simply use the PlatformType from ACI and then no assisted service client changes are required. We will throw an error if the user provides an unsupported platformType ( aws, gcp, etc)

 

Ignoring the unwanted Platform settings from install-config.yaml to be handled in https://issues.redhat.com/browse/AGENT-348

Description of the problem:

Noticed there were no thread IDs in the assisted-installer logs when debugging 240 node cluster deployment with MCE (slack thread) making it difficult to debug.

How reproducible: 100%

 

Steps to reproduce:

1. Create cluster using assisted service and start the install 

2. Look at the assisted-installer logs 

Actual results:

Logs look like

time="2022-07-14T16:17:31Z" level=info msg="Start complete installation step, with params success: true, error info: " 

Expected results: Thread ID would also print so we can understand which thread it came from


Adding setReportCaller to true will also help

This is a clone of issue OCPBUGS-1125. The following is the description of the original issue:

(originally reported in BZ as https://bugzilla.redhat.com/show_bug.cgi?id=1983200)

test:
[sig-etcd][Feature:DisasterRecovery][Disruptive] [Feature:EtcdRecovery] Cluster should restore itself after quorum loss [Serial]

is failing frequently in CI, see search results:
https://search.ci.openshift.org/?maxAge=168h&context=1&type=bug%2Bjunit&name=&maxMatches=5&maxBytes=20971520&groupBy=job&search=%5C%5Bsig-etcd%5C%5D%5C%5BFeature%3ADisasterRecovery%5C%5D%5C%5BDisruptive%5C%5D+%5C%5BFeature%3AEtcdRecovery%5C%5D+Cluster+should+restore+itself+after+quorum+loss+%5C%5BSerial%5C%5D

https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/release-openshift-origin-installer-e2e-aws-disruptive-4.8/1413625606435770368
https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/release-openshift-origin-installer-e2e-aws-disruptive-4.8/1415075413717159936

some brief triaging from Thomas Jungblut on:
https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/release-openshift-origin-installer-e2e-aws-disruptive-4.11/1568747321334697984

it seems the last guard pod doesn't come up, etcd operator installs this properly and the revision installer also does not spout any errors. It just doesn't progress to the latest revision. At first glance doesn't look like an issue with etcd itself, but needs to be taken a closer look at for sure.

Description of problem:

This a bug record to pin down dependencies version in CMO release 4.12 after the release-4.12 branch was detached from master branch.

Version-Release number of selected component (if applicable):

4.12

How reproducible:

N/A

Steps to Reproduce:

N/A

Actual results:

N/A

Expected results:

N/A

Additional info:

None.

This is a clone of issue OCPBUGS-3633. The following is the description of the original issue:

I think something is wrong with the alerts refactor, or perhaps my sync to 4.12.

Failed: suite=[openshift-tests], [sig-instrumentation][Late] Alerts shouldn't report any unexpected alerts in firing or pending state [apigroup:config.openshift.io] [Suite:openshift/conformance/parallel]

Passed 1 times, failed 0 times, skipped 0 times: we require at least 6 attempts to have a chance at success

We're not getting the passes - from https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/aggregated-azure-ovn-upgrade-4.12-micro-release-openshift-release-analysis-aggregator/1592021681235300352, the successful runs don't show any record of the test at all. We need to record successes and failures for aggregation to work right.

This is a clone of issue OCPBUGS-4101. The following is the description of the original issue:

Description of problem:

We experienced two separate upgrade failures relating to the introduction of the SYSTEM_RESERVED_ES node sizing parameter, causing kubelet to stop running.

One cluster (clusterA) upgraded from 4.11.14 to 4.11.17. It experienced an issue whereby 
   /etc/node-sizing.env 
on its master nodes contained an empty SYSTEM_RESERVED_ES value:

---
cat /etc/node-sizing.env 
SYSTEM_RESERVED_MEMORY=5.36Gi
SYSTEM_RESERVED_CPU=0.11
SYSTEM_RESERVED_ES=
---

causing the kubelet to not start up. To restore service, this file was manually updated to set a value (1Gi), and kubelet was restarted.

We are uncertain what conditions led to this occuring on the clusterA master nodes as part of the upgrade.

A second cluster (clusterB) upgraded from 4.11.16 to 4.11.17. It experienced an issue whereby worker nodes were impacted by a similar problem, however this was because a custom node-sizing-enabled.env MachineConfig which did not set SYSTEM_RESERVED_ES

This caused existing worker nodes to go into a NotReady state after the ugprade, and additionally new nodes did not join the cluster as their kubelet would become impacted. 

For clusterB the conditions are more well-known of why the value is empty.

However, for both clusters, if SYSTEM_RESERVED_ES ends up as empty on a node it can cause the kubelet to not start. 

We have some asks as a result:
- Can MCO be made to recover from this situation if it occurs, perhaps  through application of a safe default if none exists, such that kubelet would start correctly?
- Can there possibly be alerting that could indicate and draw attention to the misconfiguration?

Version-Release number of selected component (if applicable):

4.11.17

How reproducible:

Have not been able to reproduce it on a fresh cluster upgrading from 4.11.16 to 4.11.17

Expected results:

If SYSTEM_RESERVED_ES is empty in /etc/node-sizing*env then a default should be applied and/or kubelet able to continue running.

Additional info:

 

This is a clone of issue OCPBUGS-5018. The following is the description of the original issue:

Description of problem:

When upgrading from 4.11 to 4.12 an IPI AWS cluster which included Machineset and BYOH Windows nodes, the upgrade hanged while trying to upgrade the machine-api component:

$ oc get clusterversion                                                                              
NAME      VERSION                              AVAILABLE   PROGRESSING   SINCE   STATUS                                      
version   4.11.0-0.nightly-2022-12-16-190443   True        True          117m    Working towards 4.12.0-rc.5: 214 of 827 done (25% complete), waiting on machine-api

$ oc get co                                                                                                                                                                                                                              
NAME                                       VERSION                              AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE                                                                                                                                   
authentication                             4.11.0-0.nightly-2022-12-16-190443   True        False         False      4h47m   
baremetal                                  4.11.0-0.nightly-2022-12-16-190443   True        False         False      4h59m   
cloud-controller-manager                   4.12.0-rc.5                          True        False         False      5h3m    
cloud-credential                           4.11.0-0.nightly-2022-12-16-190443   True        False         False      5h4m                                                                                                                                              
cluster-autoscaler                         4.11.0-0.nightly-2022-12-16-190443   True        False         False      4h59m   
config-operator                            4.12.0-rc.5                          True        False         False      5h1m    
console                                    4.11.0-0.nightly-2022-12-16-190443   True        False         False      4h43m   
csi-snapshot-controller                    4.11.0-0.nightly-2022-12-16-190443   True        False         False      5h      
dns                                        4.11.0-0.nightly-2022-12-16-190443   True        False         False      4h59m   
etcd                                       4.12.0-rc.5                          True        False         False      4h58m         
image-registry                             4.11.0-0.nightly-2022-12-16-190443   True        False         False      4h54m         
ingress                                    4.11.0-0.nightly-2022-12-16-190443   True        False         False      4h55m   
insights                                   4.11.0-0.nightly-2022-12-16-190443   True        False         False      4h53m         
kube-apiserver                             4.12.0-rc.5                          True        False         False      4h50m         
kube-controller-manager                    4.12.0-rc.5                          True        False         False      4h57m                                                                                                                                             
kube-scheduler                             4.12.0-rc.5                          True        False         False      4h57m                                                                                                                                             kube-storage-version-migrator              4.11.0-0.nightly-2022-12-16-190443   True        False         False      5h                                                                                                                                                machine-api                                4.11.0-0.nightly-2022-12-16-190443   True        True          False      4h56m   Progressing towards operator: 4.12.0-rc.5                                                                                                 
machine-approver                           4.11.0-0.nightly-2022-12-16-190443   True        False         False      5h                                                                                                                                                machine-config                             4.11.0-0.nightly-2022-12-16-190443   True        False         False      4h59m                                                                                                                                             marketplace                                4.11.0-0.nightly-2022-12-16-190443   True        False         False      4h59m   
monitoring                                 4.11.0-0.nightly-2022-12-16-190443   True        False         False      4h53m                                                                                                                                             
network                                    4.11.0-0.nightly-2022-12-16-190443   True        False         False      5h3m          
node-tuning                                4.11.0-0.nightly-2022-12-16-190443   True        False         False      4h59m                                                                                                                                             
openshift-apiserver                        4.11.0-0.nightly-2022-12-16-190443   True        False         False      4h53m         
openshift-controller-manager               4.11.0-0.nightly-2022-12-16-190443   True        False         False      4h56m                                                                                                                                             
openshift-samples                          4.11.0-0.nightly-2022-12-16-190443   True        False         False      4h55m                                                                                                                                             
operator-lifecycle-manager                 4.11.0-0.nightly-2022-12-16-190443   True        False         False      5h                                                                                                                                                
operator-lifecycle-manager-catalog         4.11.0-0.nightly-2022-12-16-190443   True        False         False      5h                                                                                                                                                
operator-lifecycle-manager-packageserver   4.11.0-0.nightly-2022-12-16-190443   True        False         False      4h55m                                                                                                                                             
service-ca                                 4.11.0-0.nightly-2022-12-16-190443   True        False         False      5h                                                                                                                                                
storage                                    4.11.0-0.nightly-2022-12-16-190443   True        False         False      5h      

When digging a little deeper into the exact component hanging, we observed that it was the machine-api-termination-handler that was running in the Machine Windows workers, the one that was in ImagePullBackOff state:

$ oc get pods -n openshift-machine-api                                                                                                                                                                                                   
NAME                                           READY   STATUS             RESTARTS   AGE                                                                                                                                                                               
cluster-autoscaler-operator-6ff66b6655-kpgp9   2/2     Running            0          5h5m                                                                                                                                                                              
cluster-baremetal-operator-6dbcd6f76b-d9dwd    2/2     Running            0          5h5m                                          
machine-api-controllers-cdb8d979b-79xlh        7/7     Running            0          94m                                                                                                                                                                               
machine-api-operator-86bf4f6d79-g2vwm          2/2     Running            0          97m                                           
machine-api-termination-handler-fcfq2          0/1     ImagePullBackOff   0          94m                                                                                                                                                                               
machine-api-termination-handler-gj4pf          1/1     Running            0          4h57m                                                                                                                                                                             
machine-api-termination-handler-krwdg          0/1     ImagePullBackOff   0          94m                                                                                                                                                                               
machine-api-termination-handler-l95x2          1/1     Running            0          4h54m                                                                                                                                                                             
machine-api-termination-handler-p6sw6          1/1     Running            0          4h57m   

$ oc describe pods machine-api-termination-handler-fcfq2 -n openshift-machine-api                                                                                                                                                        
Name:                 machine-api-termination-handler-fcfq2
Namespace:            openshift-machine-api
Priority:             2000001000
Priority Class Name:  system-node-critical
.....................................................................
Events:
  Type     Reason                  Age                    From               Message
  ----     ------                  ----                   ----               -------
  Normal   Scheduled               94m                    default-scheduler  Successfully assigned openshift-machine-api/machine-api-termination-handler-fcfq2 to ip-10-0-145-114.us-east-2.compute.internal
  Warning  FailedCreatePodSandBox  94m                    kubelet            Failed to create pod sandbox: rpc error: code = Unknown desc = failed to setup network for sandbox "7b80f84cc547310f5370a7dde7c651ca661dd40ebd0730296329d1cbe8981b37": plugin type="win-ov
erlay" name="OVNKubernetesHybridOverlayNetwork" failed (add): error while adding HostComputeEndpoint: failed to create the new HostComputeEndpoint: hcnCreateEndpoint failed in Win32: The object already exists. (0x1392) {"Success":false,"Error":"The object already
 exists. ","ErrorCode":2147947410}
  Warning  FailedCreatePodSandBox  94m                    kubelet            Failed to create pod sandbox: rpc error: code = Unknown desc = failed to setup network for sandbox "6b3e020a419dde8359a31b56129c65821011e232467d712f9f5081f32fe380c9": plugin type="win-ov
erlay" name="OVNKubernetesHybridOverlayNetwork" failed (add): error while adding HostComputeEndpoint: failed to create the new HostComputeEndpoint: hcnCreateEndpoint failed in Win32: The object already exists. (0x1392) {"Success":false,"Error":"The object already
 exists. ","ErrorCode":2147947410}
  Normal   Pulling                 93m (x4 over 94m)      kubelet            Pulling image "quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:9aa96cb22047b62f785b87bf81ec1762703c1489079dd33008085b5585adc258"
  Warning  Failed                  93m (x4 over 94m)      kubelet            Error: ErrImagePull
  Normal   BackOff                 4m39s (x393 over 94m)  kubelet            Back-off pulling image "quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:9aa96cb22047b62f785b87bf81ec1762703c1489079dd33008085b5585adc258"


$ oc get pods -n openshift-machine-api -o wide
NAME                                           READY   STATUS             RESTARTS   AGE     IP             NODE                                         NOMINATED NODE   READINESS GATES
cluster-autoscaler-operator-6ff66b6655-kpgp9   2/2     Running            0          5h8m    10.130.0.10    ip-10-0-180-35.us-east-2.compute.internal    <none>           <none>
cluster-baremetal-operator-6dbcd6f76b-d9dwd    2/2     Running            0          5h8m    10.130.0.8     ip-10-0-180-35.us-east-2.compute.internal    <none>           <none>
machine-api-controllers-cdb8d979b-79xlh        7/7     Running            0          97m     10.128.0.144   ip-10-0-138-246.us-east-2.compute.internal   <none>           <none>
machine-api-operator-86bf4f6d79-g2vwm          2/2     Running            0          100m    10.128.0.143   ip-10-0-138-246.us-east-2.compute.internal   <none>           <none>
machine-api-termination-handler-fcfq2          0/1     ImagePullBackOff   0          97m     10.129.0.7     ip-10-0-145-114.us-east-2.compute.internal   <none>           <none>
machine-api-termination-handler-gj4pf          1/1     Running            0          5h      10.0.223.37    ip-10-0-223-37.us-east-2.compute.internal    <none>           <none>
machine-api-termination-handler-krwdg          0/1     ImagePullBackOff   0          97m     10.128.0.4     ip-10-0-143-111.us-east-2.compute.internal   <none>           <none>
machine-api-termination-handler-l95x2          1/1     Running            0          4h57m   10.0.172.211   ip-10-0-172-211.us-east-2.compute.internal   <none>           <none>
machine-api-termination-handler-p6sw6          1/1     Running            0          5h      10.0.146.227   ip-10-0-146-227.us-east-2.compute.internal   <none>           <none>
[jfrancoa@localhost byoh-auto]$ oc get nodes -o wide | grep ip-10-0-143-111.us-east-2.compute.internal
ip-10-0-143-111.us-east-2.compute.internal   Ready    worker   4h24m   v1.24.0-2566+5157800f2a3bc3   10.0.143.111   <none>        Windows Server 2019 Datacenter                                  10.0.17763.3770                containerd://1.18
[jfrancoa@localhost byoh-auto]$ oc get nodes -o wide | grep ip-10-0-145-114.us-east-2.compute.internal
ip-10-0-145-114.us-east-2.compute.internal   Ready    worker   4h18m   v1.24.0-2566+5157800f2a3bc3   10.0.145.114   <none>        Windows Server 2019 Datacenter                                  10.0.17763.3770                containerd://1.18
[jfrancoa@localhost byoh-auto]$ oc get machine.machine.openshift.io -n openshift-machine-api -o wide | grep ip-10-0-145-114.us-east-2.compute.internal
jfrancoa-1912-aws-rvkrp-windows-worker-us-east-2a-v57sh   Running   m5a.large    us-east-2   us-east-2a   4h37m   ip-10-0-145-114.us-east-2.compute.internal   aws:///us-east-2a/i-0b69d52c625c46a6a   running
[jfrancoa@localhost byoh-auto]$ oc get machine.machine.openshift.io -n openshift-machine-api -o wide | grep ip-10-0-143-111.us-east-2.compute.internal
jfrancoa-1912-aws-rvkrp-windows-worker-us-east-2a-j6gkc   Running   m5a.large    us-east-2   us-east-2a   4h37m   ip-10-0-143-111.us-east-2.compute.internal   aws:///us-east-2a/i-05e422c0051707d16   running

This is blocking the whole upgrade process, as the upgrade is not able to move further from this component.

Version-Release number of selected component (if applicable):

$ oc get clusterversion
NAME      VERSION                              AVAILABLE   PROGRESSING   SINCE   STATUS
version   4.11.0-0.nightly-2022-12-16-190443   True        True          141m    Working towards 4.12.0-rc.5: 214 of 827 done (25% complete), waiting on machine-api
$ oc version
Client Version: 4.11.0-0.ci-2022-06-09-065118
Kustomize Version: v4.5.4
Server Version: 4.11.0-0.nightly-2022-12-16-190443
Kubernetes Version: v1.25.4+77bec7a

How reproducible:

Always

Steps to Reproduce:

1. Deploy a 4.11 IPI AWS cluster with Windows workers using a MachineSet
2. Perform the upgrade to 4.12
3. Wait for the upgrade to hang on the machine-api component

Actual results:

The upgrade hangs when upgrading the machine-api component.

Expected results:

The upgrade suceeds

Additional info:


This is a clone of issue OCPBUGS-6018. The following is the description of the original issue:

This is a public clone of OCPBUGS-3821

The MCO can sometimes render a rendered-config in the middle of an upgrade with old MCs, e.g.:

  1. the containerruntimeconfigcontroller creates a new containerruntimeconfig due to the update
  2. the template controller finishes re-creating the base configs
  3. the kubeletconfig errors long enough and doesn't finish until after 2

This will cause the render controller to create a new rendered MC that uses the OLD kubeletconfig-MC, which at best is a double reboot for 1 node, and at worst block the update and break maxUnavailable nodes per pool.

Description of problem:

failed even trying to "create install-config" in the epic's scenario

Version-Release number of selected component (if applicable):

$ ./openshift-install version
./openshift-install 4.12.0-0.nightly-2022-09-28-204419
built from commit 9eb0224926982cdd6cae53b872326292133e532d
release image registry.ci.openshift.org/ocp/release@sha256:2c8e617830f84ac1ee1bfcc3581010dec4ae5d9cad7a54271574e8d91ef5ecbc
release architecture amd64

How reproducible:

Always

Steps to Reproduce:

1. create vpc network, subnets, and a firewall-rule to allow ssh access to the bastion host
2. create the bastion host, with setting a valid service-account and scopes of "https://www.googleapis.com/auth/cloud-platform"
3. scp pull secret to the bastion host
4. ssh to the bastion host (subsequent steps would be on the bastion host, except told explicitly)
5. get "oc", e.g. curl https://mirror2.openshift.com/pub/openshift-v4/clients/ocp/4.9.9/openshift-client-linux-4.9.9.tar.gz -o openshift-client-linux-4.9.9.tar.gz; tar zxvf openshift-client-linux-4.9.9.tar.gz
6. obtain the installation program
7. try "create install-config" of platform "gcp" 

Actual results:

[cloud-user@jiwei-0930-02-rhel8-mirror ~]$ ./openshift-install create install-config --dir work                                         
? SSH Public Key /home/cloud-user/.ssh/id_rsa.pub                                                                                       
? Platform gcp                                                                                                                          
INFO Credentials loaded from gcloud CLI defaults                                                                                        
? Project ID OpenShift QE Shared VPC (openshift-qe-shared-vpc)                                                                          
? Region us-west1                                                                                                                       
? Base Domain qe-shared-vpc.qe.gcp.devcluster.openshift.com                                                                             
? Cluster Name jiwei-0930-03                                                                                                            
? Pull Secret [? for help] ******
FATAL failed to fetch Install Config: failed to generate asset "Install Config": credentialsMode: Forbidden: environmental authentication is only supported with Manual credentials mode 
[cloud-user@jiwei-0930-02-rhel8-mirror ~]$ 

Expected results:

"create install-config" should succeed.

Additional info:

 

 

 

 

 

This is a clone of issue OCPBUGS-4973. The following is the description of the original issue:

Description of problem:

Config OAuth with htpasswd in the hostedcluster doesn't work as expected.

Version-Release number of selected component (if applicable):

 

How reproducible:

enable OAuth htpasswd in hostedcluster

Steps to Reproduce:

1. create passwd file for user init by htpasswd
```
htpasswd -cbB .passwd helitest helitest

oc create secret generic testuser --from-file=htpasswd=.passwd  -n clusters ``` 

2. edit hostedcluster.yaml
```
spec:
  configuration:
    oauth:
      identityProviders:
      - htpasswd:
          fileData:
            name: testuser
        mappingMethod: claim
        name: htpasswd
        type: HTPasswd
```
3. oc login hostedcluster apiserver

$ oc login https://ac0be21b169ff4399b6a2044388c38cf-5789e1b174d7424b.elb.us-east-2.amazonaws.com:6443 --username=testuser --password=testuser
The server uses a certificate signed by an unknown authority.
You can bypass the certificate check, but any data you send to the server could be intercepted by others.
Use insecure connections? (y/n): y


Login failed (401 Unauthorized) 

Actual results:

oc login with error : "Login failed (401 Unauthorized) "

Expected results:

oc login successfully.

Additional info:

# check configmap of oauth 
$ oc get cm -n clusters-demo-02 oauth-openshift -oyaml
...
    oauthConfig:
      alwaysShowProviderSelection: false
      assetPublicURL: ""
      grantConfig:
        method: deny
        serviceAccountMethod: prompt
      identityProviders: []
      loginURL: https://ac0be21b169ff4399b6a2044388c38cf-5789e1b174d7424b.elb.us-east-2.amazonaws.com:6443
      
---> seems `identityProviders` is not synced correctly ? 

Description of problem:

Pod in the openshift-marketplace cause PodSecurityViolation alerts in vanilla OpenShift cluster

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2023-01-04-203333

How reproducible:

100%

Steps to Reproduce:

1. install a freshly new cluster
2. check the alerts in the console

Actual results:

PodSecurityViolation alert is present

Expected results:

No alerts

Additional info:

I'll provide a filtered version of the audit logs containing the violations

Description of problem:

Get the below error when upgrading to OCP 4.12 from 4.9->4.10->4.11.

MacBook-Pro:~ jianzhang$ oc get clusterversion
NAME      VERSION                              AVAILABLE   PROGRESSING   SINCE   STATUS
version   4.11.0-0.nightly-2022-08-24-091058   True        True          4h      Unable to apply 4.12.0-0.nightly-2022-08-24-053339: the workload openshift-operator-lifecycle-manager/package-server-manager cannot roll out
   - lastTransitionTime: "2022-08-25T04:47:36Z"
    lastUpdateTime: "2022-08-25T04:47:36Z"
    message: 'pods "package-server-manager-85b6dc4d89-sdzcc" is forbidden: violates
      PodSecurity "restricted:v1.24": seccompProfile (pod or container "package-server-manager"
      must set securityContext.seccompProfile.type to "RuntimeDefault" or "Localhost")'
    reason: FailedCreate
    status: "True"
    type: ReplicaFailure

 

Version-Release number of selected component (if applicable):

MacBook-Pro:~ jianzhang$ oc exec catalog-operator-c5c655d5c-b9lcn -- olm --version
OLM version: 0.19.0
git commit: 8a984d41acc67c0bc9bfe807fadeef23f83abd44 

How reproducible:

always

Steps to Reproduce:
1. Install OCP 4.11.0-0.nightly-2022-08-24-091058
2. Upgrade it to 4.12.0-0.nightly-2022-08-24-053339

Actual results:

The cluster upgrading is blocked. Get the above errors as described.

Expected results:

 Upgraded to 4.12 from old OCP versions 4.5, 4.9 successfully.

Additional info:

MacBook-Pro:~ jianzhang$ oc get deployment package-server-manager -o yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  annotations:
    deployment.kubernetes.io/revision: "5"
    include.release.openshift.io/ibm-cloud-managed: "true"
    include.release.openshift.io/self-managed-high-availability: "true"
    include.release.openshift.io/single-node-developer: "true"
  creationTimestamp: "2022-08-25T00:14:08Z"
  generation: 5
  labels:
    app: package-server-manager
  name: package-server-manager
  namespace: openshift-operator-lifecycle-manager
  ownerReferences:
  - apiVersion: config.openshift.io/v1
    kind: ClusterVersion
    name: version
    uid: 3fd29082-0e76-4b09-988e-78cb5fc7c8b5
  resourceVersion: "169028"
  uid: c8f7cbe2-4f82-40ce-9468-817ffefa903f
spec:
  progressDeadlineSeconds: 600
  replicas: 1
  revisionHistoryLimit: 10
  selector:
    matchLabels:
      app: package-server-manager
  strategy:
    rollingUpdate:
      maxSurge: 25%
      maxUnavailable: 25%
    type: RollingUpdate
  template:
    metadata:
      annotations:
        target.workload.openshift.io/management: '{"effect": "PreferredDuringScheduling"}'
      creationTimestamp: null
      labels:
        app: package-server-manager
    spec:
      containers:
      - args:
        - --name
        - $(PACKAGESERVER_NAME)
        - --namespace
        - $(PACKAGESERVER_NAMESPACE)
        command:
        - /bin/psm
        - start
        env:
        - name: PACKAGESERVER_NAME
          value: packageserver
        - name: PACKAGESERVER_IMAGE
          value: quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:d49e1e27114f4b719bc8f3c222b2c5934d3b8028c79ec8e2bd288f6e9b5b3d5c
        - name: PACKAGESERVER_NAMESPACE
          valueFrom:
            fieldRef:
              apiVersion: v1
              fieldPath: metadata.namespace
        - name: RELEASE_VERSION
          value: 4.12.0-0.nightly-2022-08-24-053339
        image: quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:d49e1e27114f4b719bc8f3c222b2c5934d3b8028c79ec8e2bd288f6e9b5b3d5c
        imagePullPolicy: IfNotPresent
        livenessProbe:
          failureThreshold: 3
          httpGet:
            path: /healthz
            port: 8080
            scheme: HTTP
          initialDelaySeconds: 30
          periodSeconds: 10
          successThreshold: 1
          timeoutSeconds: 1
        name: package-server-manager
        readinessProbe:
          failureThreshold: 3
          httpGet:
            path: /healthz
            port: 8080
            scheme: HTTP
          initialDelaySeconds: 30
          periodSeconds: 10
          successThreshold: 1
          timeoutSeconds: 1
        resources:
          requests:
            cpu: 10m
            memory: 50Mi
        securityContext:
          allowPrivilegeEscalation: false
          capabilities:
            drop:
            - ALL
        terminationMessagePath: /dev/termination-log
        terminationMessagePolicy: FallbackToLogsOnError
      dnsPolicy: ClusterFirst
      nodeSelector:
        kubernetes.io/os: linux
        node-role.kubernetes.io/master: ""
      priorityClassName: system-cluster-critical
      restartPolicy: Always
      schedulerName: default-scheduler
      securityContext:
        runAsNonRoot: true
      serviceAccount: olm-operator-serviceaccount
      serviceAccountName: olm-operator-serviceaccount
      terminationGracePeriodSeconds: 30
      tolerations:
      - effect: NoSchedule
        key: node-role.kubernetes.io/master
        operator: Exists
      - effect: NoExecute
        key: node.kubernetes.io/unreachable
        operator: Exists
        tolerationSeconds: 120
      - effect: NoExecute
        key: node.kubernetes.io/not-ready
        operator: Exists
        tolerationSeconds: 120
status:
  availableReplicas: 1
  conditions:
  - lastTransitionTime: "2022-08-25T03:14:20Z"
    lastUpdateTime: "2022-08-25T03:14:20Z"
    message: Deployment has minimum availability.
    reason: MinimumReplicasAvailable
    status: "True"
    type: Available
  - lastTransitionTime: "2022-08-25T04:47:36Z"
    lastUpdateTime: "2022-08-25T04:47:36Z"
    message: 'pods "package-server-manager-85b6dc4d89-sdzcc" is forbidden: violates
      PodSecurity "restricted:v1.24": seccompProfile (pod or container "package-server-manager"
      must set securityContext.seccompProfile.type to "RuntimeDefault" or "Localhost")'
    reason: FailedCreate
    status: "True"
    type: ReplicaFailure
  - lastTransitionTime: "2022-08-25T04:57:37Z"
    lastUpdateTime: "2022-08-25T04:57:37Z"
    message: ReplicaSet "package-server-manager-85b6dc4d89" has timed out progressing.
    reason: ProgressDeadlineExceeded
    status: "False"
    type: Progressing
  observedGeneration: 5
  readyReplicas: 1
  replicas: 1
  unavailableReplicas: 1 

This is a clone of issue OCPBUGS-4049. The following is the description of the original issue:

Description of problem:

In case of CRC we provision the cluster first and the create the disk image out of it and that what we share to our users. Now till now we always remove the pull secret from the cluster after provision it using https://github.com/crc-org/snc/blob/master/snc.sh#L241-L258 and it worked without any issue till 4.11.x but for 4.12.0-rc.1 we are seeing that MCO not able to reconcile.

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1. Create a single node cluster using cluster bot `launch 4.12.0-rc.1 aws,single-node` 

2. Once cluster is provisioned update the pull secret from the config 

```
$ cat pull-secret.yaml 
apiVersion: v1
data:
  .dockerconfigjson: e30K
kind: Secret
metadata:
  name: pull-secret
  namespace: openshift-config
type: kubernetes.io/dockerconfigjson
$ oc replace -f pull-secret.yaml
```

3. Wait for MCO recocile and you will see failure to reconcile MCO

Actual results:

$ oc get mcp
NAME     CONFIG                                             UPDATED   UPDATING   DEGRADED   MACHINECOUNT   READYMACHINECOUNT   UPDATEDMACHINECOUNT   DEGRADEDMACHINECOUNT   AGE
master   rendered-master-66086aa249a9f92b773403f7c3745ea4   False     True       True       1              0                   0                     1                      94m
worker   rendered-worker-0c07becff7d3c982e24257080cc2981b   True      False      False      0              0                   0                     0                      94m


$ oc get co machine-config
NAME             VERSION       AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
machine-config   4.12.0-rc.1   True        False         True       93m     Failed to resync 4.12.0-rc.1 because: error during syncRequiredMachineConfigPools: [timed out waiting for the condition, error pool master is not ready, retrying. Status: (pool degraded: true total: 1, ready 0, updated: 0, unavailable: 0)]

$ oc logs machine-config-daemon-nf9mg -n openshift-machine-config-operator
[...]
I1123 15:00:37.864581   10194 run.go:19] Running: podman pull -q --authfile /var/lib/kubelet/config.json quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:ffa3568233298408421ff7da60e5c594fb63b2551c6ab53843eb51c8cf6838ba
Error: initializing source docker://quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:ffa3568233298408421ff7da60e5c594fb63b2551c6ab53843eb51c8cf6838ba: (Mirrors also failed: [quayio-pull-through-cache-us-west-2-ci.apps.ci.l2s4.p1.openshiftapps.com/openshift-release-dev/ocp-v4.0-art-dev@sha256:ffa3568233298408421ff7da60e5c594fb63b2551c6ab53843eb51c8cf6838ba: reading manifest sha256:ffa3568233298408421ff7da60e5c594fb63b2551c6ab53843eb51c8cf6838ba in quayio-pull-through-cache-us-west-2-ci.apps.ci.l2s4.p1.openshiftapps.com/openshift-release-dev/ocp-v4.0-art-dev: unauthorized: authentication required]): quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:ffa3568233298408421ff7da60e5c594fb63b2551c6ab53843eb51c8cf6838ba: reading manifest sha256:ffa3568233298408421ff7da60e5c594fb63b2551c6ab53843eb51c8cf6838ba in quay.io/openshift-release-dev/ocp-v4.0-art-dev: unauthorized: access to the requested resource is not authorized
W1123 15:00:39.186103   10194 run.go:45] podman failed: running podman pull -q --authfile /var/lib/kubelet/config.json quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:ffa3568233298408421ff7da60e5c594fb63b2551c6ab53843eb51c8cf6838ba failed: Error: initializing source docker://quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:ffa3568233298408421ff7da60e5c594fb63b2551c6ab53843eb51c8cf6838ba: (Mirrors also failed: [quayio-pull-through-cache-us-west-2-ci.apps.ci.l2s4.p1.openshiftapps.com/openshift-release-dev/ocp-v4.0-art-dev@sha256:ffa3568233298408421ff7da60e5c594fb63b2551c6ab53843eb51c8cf6838ba: reading manifest sha256:ffa3568233298408421ff7da60e5c594fb63b2551c6ab53843eb51c8cf6838ba in quayio-pull-through-cache-us-west-2-ci.apps.ci.l2s4.p1.openshiftapps.com/openshift-release-dev/ocp-v4.0-art-dev: unauthorized: authentication required]): quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:ffa3568233298408421ff7da60e5c594fb63b2551c6ab53843eb51c8cf6838ba: reading manifest sha256:ffa3568233298408421ff7da60e5c594fb63b2551c6ab53843eb51c8cf6838ba in quay.io/openshift-release-dev/ocp-v4.0-art-dev: unauthorized: access to the requested resource is not authorized
: exit status 125; retrying...

Expected results:

 

Additional info:

 

Description of problem:
pkg/devfile/sample_test.go fails after devfile registry was updated (https://github.com/devfile/registry/pull/126)

This issue is about updating our assertion so that the CI job runs successfully again. We might want to backport this as well.

OCPBUGS-1678 is about updating the code that the test should use a mock response instead of the latest registry content OR check some specific attributes instead of comparing the full JSON response.

Version-Release number of selected component (if applicable):
4.12

How reproducible:
Always

Steps to Reproduce:
1. Clone openshift/console
2. Run ./test-backend.sh

Actual results:
Unit tests fail

Expected results:
Unit tests should pass again

Additional info:

Description of problem:
OpenShift installer hits error when missing a topology section inside of a failureDomain like this in install-config.yaml:

    - name: us-east-1
      region: us-east
      zone: us-east-1a
    - name: us-east-2
      region: us-east
      zone: us-east-2a
      topology:
        computeCluster: /IBMCloud/host/vcs-mdcnc-workload-2
        networks:
        - ci-segment-154
        datastore: workload_share_vcsmdcncworkload2_vyC6a

Version-Release number of selected component (if applicable):

Build from latest master (4.12)

How reproducible:

Each time

Steps to Reproduce:

1. Create install-config.yaml for vsphere multi-zone
2. Leave out a topology section (under failureDomains)
3. Attempt to create cluster

Actual results:

FATAL failed to fetch Terraform Variables: failed to fetch dependency of "Terraform Variables": failed to generate asset "Platform Provisioning Check": platform.vsphere.failureDomains.topology.resourcePool: Invalid value: "//Resources": resource pool '//Resources' not found 

Expected results:

Validation of topology before attempting to create any resources

This is a clone of issue OCPBUGS-6175. The following is the description of the original issue:

Description of problem:

When the cluster is configured with Proxy the swift client in the image registry operator is not using the proxy to authenticate with OpenStack, so it's unable to reach the OpenStack API. This issue became evident since recently the support was added to not fallback to cinder in case swift is available[1].

[1]https://github.com/openshift/cluster-image-registry-operator/pull/819

 

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1. Deploy a cluster with proxy and restricted installation
2. 
3.

Actual results:

 

Expected results:

 

Additional info:

 

Description of problem:

When services are deleted, the services controller cache should also remove the service from its top level cache to avoid growing forever.

While this is not an issue in 4.13 once the lb_cache rework merges [1], the 4.12 and older branches have this problem because that rework is meant for 4.13 only.

[1]: https://github.com/ovn-org/ovn-kubernetes/pull/3387

This is the location where alreadyApplied is not deleting the removal: 
https://github.com/openshift/ovn-kubernetes/blob/cf9fb51510e1870961bf3a0f064b73536757a4f8/go-controller/pkg/ovn/controller/services/services_controller.go#L269

It should do the similar changes depicted here (currently merged upstream):
https://github.com/ovn-org/ovn-kubernetes/blob/cd78ae1af4657d38bdc41003a8737aa958d62b9d/go-controller/pkg/ovn/controller/services/services_controller.go#L322-L324

 

Version-Release number of selected component (if applicable):

 

How reproducible:

100%

Steps to Reproduce:

1. create service -- use unique name
2. remove service
3. notice how alreadyApplied grows and never gets smaller
4. repeat

Actual results:

^^

Expected results:

alreadyApplied should not grow forever

Additional info:

 

This is a clone of issue OCPBUGS-2083. The following is the description of the original issue:

Description of problem:
Currently we are running VMWare CSI Operator in OpenShift 4.10.33. After running vulnerability scans, the operator was discovered to be running a known weak cipher 3DES. We are attempting to upgrade or modify the operator to customize the ciphers available. We were looking at performing a manual upgrade via Quay.io but can't seem to pull the image and was trying to steer away from performing a custom install from scratch. Looking for any suggestions into mitigated the weak cipher in the kube-rbac-proxy under VMware CSI Operator.

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

This is a clone of issue OCPBUGS-4026. The following is the description of the original issue:

Description of problem:
There is an endless re-render loop and a browser feels slow to stuck when opening the add page or the topology.

Saw also endless API calls to /api/kubernetes/apis/binding.operators.coreos.com/v1alpha1/bindablekinds/bindable-kinds

Version-Release number of selected component (if applicable):
1. Console UI 4.12-4.13 (master)
2. Service Binding Operator (tested with 1.3.1)

How reproducible:
Always with installed SBO

But the "stuck feeling" depends on the browser (Firefox feels more stuck) and your locale machine power

Steps to Reproduce:
1. Install Service Binding Operator
2. Create or update the BindableKinds resource "bindable-kinds"

apiVersion: binding.operators.coreos.com/v1alpha1
kind: BindableKinds
metadata:
  name: bindable-kinds

3. Open the browser console log
4. Open the console UI and navigate to the add page

Actual results:
1. Saw endless API calls to /api/kubernetes/apis/binding.operators.coreos.com/v1alpha1/bindablekinds/bindable-kinds
2. Browser feels slow and get stuck after some time
3. The page crashs after some time

Expected results:
1. The API call should be called just once
2. The add page should just work without feeling laggy
3. No crash

Additional info:
Get introduced after we watching the bindable-kinds resource with https://github.com/openshift/console/pull/11161

It looks like this happen only if the SBO is installed and the bindable-kinds resource exist, but doesn't contain any status.

The status list all available bindable resource types. I could not reproduce this by installing and uninstalling an operator, but you can manually create or update this resource as mentioned above.

This is a clone of issue OCPBUGS-2851. The following is the description of the original issue:

Description of problem:

The current implementation of registries.conf support is not working as expected. This bug report will outline the expectations of how we believe this should work.

Background

The containers/image project defines a configuration file called registries.conf, which controls how image pulls can be redirected to another registry. Effectively the pull request for a given registry is redirected to another registry which can satisfy the image pull request instead. The specification for the registries.conf file is located here. For tools such as podman and skopeo, this configuration file allows those tools to indicate where images should be pulled from, and the containers/image project rewrites the image reference on the fly and tries to get the image from the first location it can, preferring these "alternate locations" and then falling back to the original location if one of the alternate locations can't satisfy the image request.

An important aspect of this redirection mechanism is it allows the "host:port" and "namespace" portions of the image reference to be redirected. To be clear on the nomenclature used in the registries.conf specification, a namespace refers to zero or more slash separated sections leading up to the image name (which is called repo in the specification and has the tag or digest after it. See repo(:_tag|@digest) below) and the host[:port] refers to the domain where the image registry is being hosted.

Example:

host[:port]/namespace[/namespace…]/repo(:_tag|@digest)

For example, if we have an image called myimage@sha:1234 the and the image normally resides in quay.io/foo/myimage@sha:1234 you could redirect the image pull request to my registry.com/bar/baz/myimage@sha:1234. Note that in this example the alternate registry location is in a different host, and the namespace "path" is different too.

Use Case

In a typical development scenario, image references within an OLM catalog should always point to a production location where the image is intended to be pulled from when a catalog is published publicly. Doing this prevents publishing a catalog which contains image references to internal repositories, which would never be accessible by a customer. By using the registries.conf redirection mechanism, we can perform testing even before the images are officially published to public locations, and we can redirect the image reference from a production location to an internal repository for testing purposes. Below is a simple example of a registries.conf file that redirects image pull requests away from prodlocation.io to preprodlocation.com:

[[registry]]
 location = "prodlocation.io/xx"
 insecure = false
 blocked = false
 mirror-by-digest-only = true
 prefix = ""
 [[registry.mirror]]
  location = "preprodlocation.com/xx"
  insecure = false

Other Considerations

  • We only care about redirection of images during image pull. Image redirection on push is out of scope.
  • We would like to see as much support for the fields and TOML tables defined in the spec as possible. That being said, there are some items we don't really care about.
    • supported:
      • support multiple [[registry]] TOML tables
      • support multiple [[registry.mirror]] TOML tables for a given [[registry]] TOML table
      • if all entires of [[registry.mirror]] for a given [[registry]] TOML table do not resolve an image, the original [[registry]] TOML locations should be used as the final fallback (this is consistent with how the specification is written, but want to make this point clear. See the specification example which describes how things should work.
      • prefix and location
        • These fields work together, so refer to the specification for how this works. If necessary, we could simplify this to only use location since we are unlikely to use the prefix option.
      • insecure
        • this should be supported for the [[registry]] and [[registry.mirror]] TOML tables so you know how to access registries. If this is not needed by oc mirror then we can forgo this field.
    • fields that require discussion:
      • we assume that digests and tags can be supplied for an image reference, but in the end digests are required for oc mirror to keep track of the image in the workspace. It's not clear if we need to support these configuration options or not:
        • mirror-by-digest-only
          • we assume this is always false since we don't need to prevent an image from being pulled if it is using a tag
        • pull-from-mirror
          • we assume this is always all since we don't need to prevent an image from being pulled if it is using a tag
    • does not need to be supported:
      • unqualified-search-registries
      • credential-helpers
      • blocked
      • aliases
  • we are not interested in supporting version 1 of registries.conf since it is deprecated

Version-Release number of selected component (if applicable):

4.12

How reproducible:

Always

Steps to Reproduce:

oc mirror -c ImageSetConfiguration.yaml --use-oci-feature --oci-feature-action mirror --oci-insecure-signature-policy --oci-registries-config registries.conf --dest-skip-tls docker://localhost:5000/example/test

Example registries.conf

[[registry]]
  prefix = ""
  insecure = false
  blocked = false
  location = "prod.com/abc"
  mirror-by-digest-only = true
  [[registry.mirror]]
    location = "internal.exmaple.io/cp"
    insecure = false
[[registry]]
  prefix = ""
  insecure = false
  blocked = false
  location = "quay.io"
  mirror-by-digest-only = true
  [[registry.mirror]]
    location = "internal.exmaple.io/abcd"
    insecure = false

 

Actual results:

images are not pulled from "internal" registry

Expected results:

images should be pulled from "internal" registry

Additional info:

The current implementation in oc mirror creates its own structs to approximate the ones provided by the containers/image project, but it might not be necessary to do that. Since the oc mirror project already uses containers/image as a dependency, it could leverage the FindRegistry function, which takes a image reference, loads the registries.conf information and returns the most appropriate [[registry]] reference (in the form of Registry struct) or nil if no match was found. Obviously custom processing will be necessary to do something useful with the Registry instance. Using this code is not a requirement, just a suggestion of another possible path to load the configuration.

This is a clone of issue OCPBUGS-881. The following is the description of the original issue:

Description of problem:

Create install-config file for vsphere IPI against 4.12.0-0.nightly-2022-09-02-194931, fail as apiVIP and ingressVIP are not in machine CIDR.

$ ./openshift-install create install-config --dir ipi                
? Platform vsphere
? vCenter xxxxxxxx
? Username xxxxxxxx
? Password [? for help] ********************
INFO Connecting to xxxxxxxx
INFO Defaulting to only available datacenter: SDDC-Datacenter 
INFO Defaulting to only available cluster: Cluster-1 
INFO Defaulting to only available datastore: WorkloadDatastore 
? Network qe-segment
? Virtual IP Address for API 172.31.248.137
? Virtual IP Address for Ingress 172.31.248.141
? Base Domain qe.devcluster.openshift.com 
? Cluster Name jimavmc       
? Pull Secret [? for help] ****************************************************************************************************************************************************************************************
FATAL failed to fetch Install Config: failed to generate asset "Install Config": invalid install config: [platform.vsphere.apiVIPs: Invalid value: "172.31.248.137": IP expected to be in one of the machine networks: 10.0.0.0/16, platform.vsphere.ingressVIPs: Invalid value: "172.31.248.141": IP expected to be in one of the machine networks: 10.0.0.0/16] 

As user could not define cidr for machineNetwork when creating install-config file interactively, it will use default value 10.0.0.0/16, so fail to create install-config when inputting apiVIP and ingressVIP outside of default machinenNetwork.

Error is thrown from https://github.com/openshift/installer/blob/master/pkg/types/validation/installconfig.go#L655-L666, seems new function introduced from PR https://github.com/openshift/installer/pull/5798

The issue should also impact Nutanix platform.
 

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-09-02-194931

How reproducible:

Always

Steps to Reproduce:

1. create install-config.yaml file by running command "./openshift-install create install-config --dir ipi"
2. failed with above error
3.

Actual results:

fail to create install-config.yaml file

Expected results:

succeed to create install-config.yaml file

Additional info:

 

This is a clone of issue OCPBUGS-5523. The following is the description of the original issue:

Description of problem:

catalog pod restarting frequently  after one stack trace daily.          ~~~                                                                          $ omc logs catalog-operator-f7477865d-x6frl -p
2023-01-04T13:05:15.175952229Z time="2023-01-04T13:05:15Z" level=info msg=syncing event=update reconciling="*v1alpha1.Subscription" selflink=
2023-01-04T13:05:15.175952229Z fatal error: concurrent map read and map write
2023-01-04T13:05:15.178587884Z
2023-01-04T13:05:15.178674833Z goroutine 669 [running]:
2023-01-04T13:05:15.179284556Z runtime.throw({0x1efdc12, 0xc000580000})
2023-01-04T13:05:15.179458107Z 	/usr/lib/golang/src/runtime/panic.go:1198 +0x71 fp=0xc00559d098 sp=0xc00559d068 pc=0x43bcd1
2023-01-04T13:05:15.179707701Z runtime.mapaccess1_faststr(0x7f39283dd878, 0x10, {0xc000894c40, 0xf})
2023-01-04T13:05:15.179932520Z 	/usr/lib/golang/src/runtime/map_faststr.go:21 +0x3a5 fp=0xc00559d100 sp=0xc00559d098 pc=0x418ca5
2023-01-04T13:05:15.180181245Z github.com/operator-framework/operator-lifecycle-manager/pkg/metrics.UpdateSubsSyncCounterStorage(0xc00545cfc0)       ~~~

 

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

Slack discussion: https://redhat-internal.slack.com/archives/C3VS0LV41/p1673120541153639                            MG link - https://attachments.access.redhat.com/hydra/rest/cases/03396604/attachments/25f23643-2447-442b-ba26-4338b679b8cc?usePresignedUrl=true

 

This bug is a backport clone of [Bugzilla Bug 2100181](https://bugzilla.redhat.com/show_bug.cgi?id=2100181). The following is the description of the original bug:

Created attachment 1891950
log

Description of problem:

Prior to OCP 4.7.48, the configure-ovs script picked the corrected bonded interface for br-ex. In OCP 4.7.48 we have that is consistently fail. It picks one of the slave interfaces (ens3f0).

Version-Release number of selected component (if applicable):
OCP Release > OCP 4.7.37

How reproducible:
100%

Steps to Reproduce:
1. Deploy an OCP cluster with bonding
2.
3.

Actual results:

Expected results:

configure-ovs should not fail and assign the correct interface to br-ex (bond1)

Additional info:

There appears to be a new default NM profile from 4.7.37 to 4.7.38 a that was not there before

This is a clone of issue OCPBUGS-8701. The following is the description of the original issue:

This is a clone of issue OCPBUGS-8232. The following is the description of the original issue:

Description of problem:

oc patch project command is failing to annotate the project

Version-Release number of selected component (if applicable):

4.12

How reproducible:

100%

Steps to Reproduce:

1. Run the below patch command to update the annotation on existing project
~~~
oc patch project <PROJECT_NAME> --type merge --patch '{"metadata":{"annotations":{"openshift.io/display-name": "null","openshift.io/description": "This is a new project"}}}'
~~~


Actual results:

It produces the error output below:
~~~
The Project "<PROJECT_NAME>" is invalid: * metadata.namespace: Invalid value: "<PROJECT_NAME>": field is immutable * metadata.namespace: Forbidden: not allowed on this type 
~~~ 

Expected results:

The `oc patch project` command should patch the project with specified annotation.

Additional info:

Tried to patch the project with OCP 4.11.26 version, and it worked as expected.
~~~
oc patch project <PROJECT_NAME> --type merge --patch '{"metadata":{"annotations":{"openshift.io/display-name": "null","openshift.io/description": "New project"}}}'

project.project.openshift.io/<PROJECT_NAME> patched
~~~

The issue is with OCP 4.12, where it is not working. 

 

This is a clone of issue OCPBUGS-10239. The following is the description of the original issue:

This is a clone of issue OCPBUGS-8082. The following is the description of the original issue:

Description of problem:

Currently during the gathering some of the ServiceAccounts were lost. This tasks fixes that problem.

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info: