Back to index

4.12.5

Jump to: Complete Features | Incomplete Features | Complete Epics | Incomplete Epics | Other Complete | Other Incomplete |

Changes from 4.11.59

Note: this page shows the Feature-Based Change Log for a release

Complete Features

These features were completed when this image was assembled

1. Proposed title of this feature request
Add runbook_url to alerts in the OCP UI

2. What is the nature and description of the request?
If an alert includes a runbook_url label, then it should appear in the UI for the alert as a link.

3. Why does the customer need this? (List the business requirements here)
Customer can easily reach the alert runbook and be able to address their issues.

4. List any affected packages or components.

Epic Goal

  • Make it possible to disable the console operator at install time, while still having a supported+upgradeable cluster.

Why is this important?

  • It's possible to disable console itself using spec.managementState in the console operator config. There is no way to remove the console operator, though. For clusters where an admin wants to completely remove console, we should give the option to disable the console operator as well.

Scenarios

  1. I'm an administrator who wants to minimize my OpenShift cluster footprint and who does not want the console installed on my cluster

Acceptance Criteria

  • It is possible at install time to opt-out of having the console operator installed. Once the cluster comes up, the console operator is not running.

Dependencies (internal and external)

  1. Composable cluster installation

Previous Work (Optional):

  1. https://docs.google.com/document/d/1srswUYYHIbKT5PAC5ZuVos9T2rBnf7k0F1WV2zKUTrA/edit#heading=h.mduog8qznwz
  2. https://docs.google.com/presentation/d/1U2zYAyrNGBooGBuyQME8Xn905RvOPbVv3XFw3stddZw/edit#slide=id.g10555cc0639_0_7

Open questions::

  1. The console operator manages the downloads deployment as well. Do we disable the downloads deployment? Long term we want to move to CLI manager: https://github.com/openshift/enhancements/blob/6ae78842d4a87593c63274e02ac7a33cc7f296c3/enhancements/oc/cli-manager.md

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

In the console-operator repo we need to add `capability.openshift.io/console` annotation to all the manifests that the operator either contains creates on the fly.

 

Manifests are currently present in /bindata and /manifest directories.

 

Here is example of the insights-operator change.

Here is the overall enhancement doc.

 

Feature Overview
Provide CSI drivers to replace all the intree cloud provider drivers we currently have. These drivers will probably be released as tech preview versions first before being promoted to GA.

Goals

  • Framework for rapid creation of CSI drivers for our cloud providers
  • CSI driver for AWS EBS
  • CSI driver for AWS EFS
  • CSI driver for GCP
  • CSI driver for Azure
  • CSI driver for VMware vSphere
  • CSI Driver for Azure Stack
  • CSI Driver for Alicloud
  • CSI Driver for IBM Cloud

Requirements

Requirement Notes isMvp?
Framework for CSI driver  TBD Yes
Drivers should be available to install both in disconnected and connected mode   Yes
Drivers should upgrade from release to release without any impact   Yes
Drivers should be installable via CVO (when in-tree plugin exists)    

Out of Scope

This work will only cover the drivers themselves, it will not include

  • enhancements to the CSI API framework
  • the migration to said drivers from the the intree drivers
  • work for non-cloud provider storage drivers (FC-SAN, iSCSI) being converted to CSI drivers

Background, and strategic fit
In a future Kubernetes release (currently 1.21) intree cloud provider drivers will be deprecated and replaced with CSI equivalents, we need the drivers created so that we continue to support the ecosystems in an appropriate way.

Assumptions

  • Storage SIG won't move out the changeover to a later Kubernetes release

Customer Considerations
Customers will need to be able to use the storage they want.

Documentation Considerations

  • Target audience: cluster admins
  • Updated content: update storage docs to show how to use these drivers (also better expose the capabilities)

This Epic is to track the GA of this feature

Goal

  • Make available the Google Cloud File Service via a CSI driver, it is desirable that this implementation has dynamic provisioning
  • Without GCP filestore support, we are limited to block / RWO only (GCP PD 4.8 GA)
  • Align with what we support on other major public cloud providers.

Why is this important?

  • There is a know storage gap with google cloud where only block is supported
  • More customers deploying on GCE and asking for file / RWX storage.

Scenarios

  1. Install the CSI driver
  2. Remove the CSI Driver
  3. Dynamically provision a CSI Google File PV*
  4. Utilise a Google File PV
  5. Assess optional features such as resize & snapshot

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Customers::

  • Telefonica Spain
  • Deutsche Bank

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

As an OCP user, I want images for GCP Filestore CSI Driver and Operator, so that I can install them on my cluster and utilize GCP Filestore shares.

Epic Goal

  • Enable the migration from a storage intree driver to a CSI based driver with minimal impact to the end user, applications and cluster
  • These migrations would include, but are not limited to:
    • CSI driver for AWS EBS
    • CSI driver for GCP
    • CSI driver for Azure (file and disk)
    • CSI driver for VMware vSphere

Why is this important?

  • OpenShift needs to maintain it's ability to enable PVCs and PVs of the main storage types
  • CSI Migration is getting close to GA, we need to have the feature fully tested and enabled in OpenShift
  • Upstream intree drivers are being deprecated to make way for the CSI drivers prior to intree driver removal

Scenarios

  1. User initiated move to from intree to CSI driver
  2. Upgrade initiated move from intree to CSI driver
  3. Upgrade from EUS to EUS

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

On new installations, we should make the StorageClass created by the CSI operator the default one. 

However, we shouldn't do that on an upgrade scenario. The main reason is that users might have set  a different quota on the CSI driver Storage Class.

Exit criteria:

  • New clusters get the CSI Storage Class as the default one.
  • Existing clusters don't get their default Storage Classes changed.

This Epic tracks the GA of this feature

Epic Goal

Why is this important?

  • OpenShift needs to maintain it's ability to enable PVCs and PVs of the main storage types
  • CSI Migration is getting close to GA, we need to have the feature fully tested and enabled in OpenShift
  • Upstream intree drivers are being deprecated to make way for the CSI drivers prior to intree driver removal

Scenarios

  1. User initiated move to from intree to CSI driver
  2. Upgrade initiated move from intree to CSI driver
  3. Upgrade from EUS to EUS

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

On new installations, we should make the StorageClass created by the CSI operator the default one. 

However, we shouldn't do that on an upgrade scenario. The main reason is that users might have set  a different quota on the CSI driver Storage Class.

Exit criteria:

  • New clusters get the CSI Storage Class as the default one.
  • Existing clusters don't get their default Storage Classes changed.

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Rebase OpenShift components to k8s v1.24

Why is this important?

  • Rebasing ensures components work with the upcoming release of Kubernetes
  • Address tech debt related to upstream deprecations and removals.

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. k8s 1.24 release

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Epic Goal

  • Rebase cluster autoscaler on top of Kubernetes 1.25

Why is this important?

  • Need to pick up latest upstream changes

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story

As a user I would like to see all the events that the autoscaler creates, even duplicates. Having the CAO set this flag will allow me to continue to see these events.

Background

We have carried a patch for the autoscaler that would enable the duplication of events. This patch can now be dropped because the upstream added a flag for this behavior in https://github.com/kubernetes/autoscaler/pull/4921

Steps

  • add the --record-duplicated-events flag to all autoscaler deployments from the CAO

Stakeholders

  • openshift eng

Definition of Done

  • autoscaler continues to work as expected and produces events for everything
  • Docs
  • this does not require documentation as it preserves existing behavior and provides no interface for user interaction
  • Testing
  • current tests should continue to pass

Feature Overview

Add GA support for deploying OpenShift to IBM Public Cloud

Goals

Complete the existing gaps to make OpenShift on IBM Cloud VPC (Next Gen2) General Available

Requirements

Optional requirements

  • OpenShift can be deployed using Mint mode and STS for cloud provider credentials (future release, tbd)
  • OpenShift can be deployed in disconnected mode https://issues.redhat.com/browse/SPLAT-737)
  • OpenShift on IBM Cloud supports User Provisioned Infrastructure (UPI) deployment method (future release, 4.14?)

Epic Goal

  • Enable installation of private clusters on IBM Cloud. This epic will track associated work.

Why is this important?

  • This is required MVP functionality to achieve GA.

Scenarios

  1. Install a private cluster on IBM Cloud.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Background and Goal

Currently in OpenShift we do not support distributing hotfix packages to cluster nodes. In time-sensitive situations, a RHEL hotfix package can be the quickest route to resolving an issue. 

Acceptance Criteria

  1. Under guidance from Red Hat CEE, customers can deploy RHEL hotfix packages to MachineConfigPools.
  2. Customers can easily remove the hotfix when the underlying RHCOS image incorporates the fix.

Before we ship OCP CoreOS layering in https://issues.redhat.com/browse/MCO-165 we need to switch the format of what is currently `machine-os-content` to be the new base image.

The overall plan is:

  • Publish the new base image as `rhel-coreos-8` in the release image
  • Also publish the new extensions container (https://github.com/openshift/os/pull/763) as `rhel-coreos-8-extensions`
  • Teach the MCO to use this without also involving layering/build controller
  • Delete old `machine-os-content`

After https://github.com/openshift/os/pull/763 is in the release image, teach the MCO how to use it. This is basically:

  • Schedule the extensions container as a kubernetes service (just serves a yum repo via http)
  • Change the MCD to write a file into `/etc/yum.repos.d/machine-config-extensions.repo` that consumes it instead of what it does now in pulling RPMs from the mounted container filesystem

As a OCP CoreOS layering developer, having telemetry data about number of cluster using osImageURL will help understand how broadly this feature is getting used and improve accordingly.

Acceptance Criteria:

  • Cluster using Custom osImageURL is available via telemetry

 

Why?

  • Decouple control and data plane. 
    • Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.
  • Improve security
    • Shift credentials out of cluster that support the operation of core platform vs workload
  • Improve cost
    • Allow a user to toggle what they don’t need.
    • Ensure a smooth path to scale to 0 workers and upgrade with 0 workers.

 

Assumption

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure , and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

 

 

Doc: https://docs.google.com/document/d/1sXCaRt3PE0iFmq7ei0Yb1svqzY9bygR5IprjgioRkjc/edit 

Overview 

Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.

Assumption

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure, and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

DoD 

Run cluster-storage-operator (CSO) + AWS EBS CSI driver operator + AWS EBS CSI driver control-plane Pods in the management cluster, run the driver DaemonSet in the hosted cluster.

More information here: https://docs.google.com/document/d/1sXCaRt3PE0iFmq7ei0Yb1svqzY9bygR5IprjgioRkjc/edit 

 

As OCP support engineer I want the same guest cluster storage-related objects in output of "hypershift dump cluster --dump-guest-cluster" as in "oc adm must-gather ", so I can debug storage issues easily.

 

must-gather collects: storageclasses persistentvolumes volumeattachments csidrivers csinodes volumesnapshotclasses volumesnapshotcontents

hypershift collects none of this, the relevant code is here: https://github.com/openshift/hypershift/blob/bcfade6676f3c344b48144de9e7a36f9b40d3330/cmd/cluster/core/dump.go#L276

 

Exit criteria:

  • verify that hypershift dump cluster --dump-guest-cluster has storage objects from the guest cluster.

As HyperShift Cluster Instance Admin, I want to run cluster-storage-operator (CSO) in the management cluster, so the guest cluster runs just my applications.

  • Add a new cmdline option for the guest cluster kubeconfig file location
  • Parse both kubeconfigs:
    • One from projected service account, which leads to the management cluster.
    • Second from the new cmdline option introduced above. This one leads to the guest cluster.
  • Tag manifests of objects that should not be deployed by CVO in HyperShift
  • Only on HyperShift:
    • When interacting with Kubernetes API, carefully choose the right kubeconfig to watch / create / update objects in the right cluster.
    • Replace namespaces in all Deployments and other objects that are created in the management cluster. They must be created in the same namespace as the operator.
    • Pass only the guest kubeconfig to the operands (AWS EBS CSI driver operator).

Exit criteria:

  • CSO and AWS EBS CSI driver operator runs in the management cluster in HyperShift
  • Storage works in the guest cluster.
  • No regressions in standalone OCP.

As HyperShift Cluster Instance Admin, I want to run AWS EBS CSI driver operator + control plane of the CSI driver in the management cluster, so the guest cluster runs just my applications.

  • Add a new cmdline option for the guest cluster kubeconfig file location
  • Parse both kubeconfigs:
    • One from projected service account, which leads to the management cluster.
    • Second from the new cmdline option introduced above. This one leads to the guest cluster.
  • Only on HyperShift:
    • When interacting with Kubernetes API, carefully choose the right kubeconfig to watch / create / update objects in the right cluster.
    • Replace namespaces in all Deployments and other objects that are created in the management cluster. They must be created in the same namespace as the operator.
  •  
  •  
    • Pass only the guest kubeconfig to the operand (control-plane Deployment of the CSI driver).

Exit criteria:

  • Control plane Deployment of AWS EBS CSI driver runs in the management cluster in HyperShift.
  • Storage works in the guest cluster.
  • No regressions in standalone OCP.

Epic Goal

  • To improve debug-ability of ovn-k in hypershift
  • To verify the stability of of ovn-k in hypershift
  • To introduce a EgressIP reach-ability check that will work in hypershift

Why is this important?

  • ovn-k is supposed to be GA in 4.12. We need to make sure it is stable, we know the limitations and we are able to debug it similar to the self hosted cluster.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated

Dependencies (internal and external)

  1. This will need consultation with the people working on HyperShift

Previous Work (Optional):

  1. https://issues.redhat.com/browse/SDN-2589

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Overview 

Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.

Assumption

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure, and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

DoD 

cluster-snapshot-controller-operator is running on the CP. 

More information here: https://docs.google.com/document/d/1sXCaRt3PE0iFmq7ei0Yb1svqzY9bygR5IprjgioRkjc/edit 

As HyperShift Cluster Instance Admin, I want to run cluster-csi-snapshot-controller-operator in the management cluster, so the guest cluster runs just my applications.

  • Add a new cmdline option for the guest cluster kubeconfig file location
  • Parse both kubeconfigs:
    • One from projected service account, which leads to the management cluster.
    • Second from the new cmdline option introduced above. This one leads to the guest cluster.
  • Move creation of manifests/08_webhook_service.yaml from CVO to the operator - it needs to be created in the management cluster.
  • Tag manifests of objects that should not be deployed by CVO in HyperShift by
  • Only on HyperShift:
    • When interacting with Kubernetes API, carefully choose the right kubeconfig to watch / create / update objects in the right cluster.
    • Replace namespaces in all Deployments and other objects that are created in the management cluster. They must be created in the same namespace as the operator.
    • Don’t create operand’s PodDisruptionBudget?
    • Update ValidationWebhookConfiguration to point directly to URL exposed by manifests/08_webhook_service.yaml instead of a Service. The Service is not available in the guest cluster.
    • Pass only the guest kubeconfig to the operands (both the webhook and csi-snapshot-controller).
    • Update unit tests to handle two kube clients.

Exit criteria:

  • cluster-csi-snapshot-controller-operator runs in the management cluster in HyperShift
  • csi-snapshot-controller runs in the management cluster in HyperShift
  • It is possible to take & restore volume snapshot in the guest cluster.
  • No regressions in standalone OCP.

As OpenShift developer I want cluster-csi-snapshot-controller-operator to use existing controllers in library-go, so I don’t need to maintain yet another code that does the same thing as library-go.

  • Check and remove manifests/03_configmap.yaml, it does not seem to be useful.
  • Check and remove manifests/03_service.yaml, it does not seem to be useful (at least now).
  • Use DeploymentController from library-go to sync Deployments.
  • Get rid of common/ package? It does not seem to be useful.
  • Use StaticResourceController for static content, including the snapshot CRDs.

Note: if this refactoring introduces any new conditions, we must make sure that 4.11 snapshot controller clears them to support downgrade! This will need 4.11 BZ + z-stream update!

Similarly, if some conditions become obsolete / not managed by any controller, they must be cleared by 4.12 operator.

Exit criteria:

  • The operator code is smaller.
  • No regressions in standalone OCP.
  • Upgrade/downgrade from/to standalone OCP 4.11 works.
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

Incomplete Features

When this image was assembled, these features were not yet completed. Therefore, only the Jira Cards included here are part of this release

Epic Goal

  • Enabling integration of single hub cluster to install both ARM and x86 spoke clusters
  • Enabling support for heterogeneous OCP clusters
  • document requirements deployment flows
  • support in disconnected environment

Why is this important?

  • clients request

Scenarios

  1. Users manage both ARM and x86 machines, we should not require to have two different hub clusters
  2. Users manage a mixed architecture clusters without requirement of all the nodes to be of the same architecture

Acceptance Criteria

  • Process is well documented
  • we are able to install in a disconnected environment

We have a set of images

  • quay.io/edge-infrastructure/assisted-installer-agent:latest
  • quay.io/edge-infrastructure/assisted-installer-controller:latest
  • quay.io/edge-infrastructure/assisted-installer:latest

that should become multiarch images. This should be done both in upstream and downstream.

As a reference, we have built internally those images as multiarch and made them available as

  • registry.redhat.io/rhai-tech-preview/assisted-installer-agent-rhel8:latest
  • registry.redhat.io/rhai-tech-preview/assisted-installer-reporter-rhel8:latest
  • registry.redhat.io/rhai-tech-preview/assisted-installer-rhel8:latest

They can be consumed by the Assisted Serivce pod via the following env

    - name: AGENT_DOCKER_IMAGE
      value: registry.redhat.io/rhai-tech-preview/assisted-installer-agent-rhel8:latest
    - name: CONTROLLER_IMAGE
      value: registry.redhat.io/rhai-tech-preview/assisted-installer-reporter-rhel8:latest
    - name: INSTALLER_IMAGE
      value: registry.redhat.io/rhai-tech-preview/assisted-installer-rhel8:latest

OLM would have to support a mechanism like podAffinity which allows multiple architecture values to be specified which enables it to pin operators to the matching architecture worker nodes

Ref: https://github.com/openshift/enhancements/pull/1014

 

Cut a new release of the OLM API and update OLM API dependency version (go.mod) in OLM package; then
Bring the upstream changes from OLM-2674 to the downstream olm repo.

A/C:

 - New OLM API version release
 - OLM API dependency updated in OLM Project
 - OLM Subscription API changes  downstreamed
 - OLM Controller changes  downstreamed
 - Changes manually tested on Cluster Bot

Feature Overview

We drive OpenShift cross-market customer success and new customer adoption with constant improvements and feature additions to the existing capabilities of our OpenShift Core Networking (SDN and Network Edge). This feature captures that natural progression of the product.

Goals

  • Feature enhancements (performance, scale, configuration, UX, ...)
  • Modernization (incorporation and productization of new technologies)

Requirements

  • Core Networking Stability
  • Core Networking Performance and Scale
  • Core Neworking Extensibility (Multus CNIs)
  • Core Networking UX (Observability)
  • Core Networking Security and Compliance

In Scope

  • Network Edge (ingress, DNS, LB)
  • SDN (CNI plugins, openshift-sdn, OVN, network policy, egressIP, egress Router, ...)
  • Networking Observability

Out of Scope

There are definitely grey areas, but in general:

  • CNV
  • Service Mesh
  • CNF

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

Goal: Provide queryable metrics and telemetry for cluster routes and sharding in an OpenShift cluster.

Problem: Today we test OpenShift performance and scale with best-guess or anecdotal evidence for the number of routes that our customers use. Best practices for a large number of routes in a cluster is to shard, however we have no visibility with regard to if and how customers are using sharding.

Why is this important? These metrics will inform our performance and scale testing, documented cluster limits, and how customers are using sharding for best practice deployments.

Dependencies (internal and external):

Prioritized epics + deliverables (in scope / not in scope):

Not in scope:

Estimate (XS, S, M, L, XL, XXL):

Previous Work:

Open questions:

Acceptance criteria:

Epic Done Checklist:

  • CI - CI Job & Automated tests: <link to CI Job & automated tests>
  • Release Enablement: <link to Feature Enablement Presentation> 
  • DEV - Upstream code and tests merged: <link to meaningful PR orf GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>
  • Notes for Done Checklist
    • Adding links to the above checklist with multiple teams contributing; select a meaningful reference for this Epic.
    • Checklist added to each Epic in the description, to be filled out as phases are completed - tracking progress towards “Done” for the Epic.

Description:

As described in the Design Doc, the following information is needed to be exported from Cluster Ingress Operator:

  • Number of routes/shard

Design 2 will be implemented as part of this story.

 

Acceptance Criteria:

  • Support for exporting the above mentioned metrics by Cluster Ingress Operator

Description:

As described in the Metrics to be sent via telemetry section of the Design Doc, the following metrics is needed to be sent from OpenShift cluster to Red Hat premises:

  • Minimum Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:min  : min(route_metrics_controller_routes_per_shard)
    • Gives the minimum value of Routes per Shard.
  • Maximum Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:max  : max(route_metrics_controller_routes_per_shard)
    • Gives the maximum value of Routes per Shard.
  • Average Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:avg  : avg(route_metrics_controller_routes_per_shard)
    • Gives the average value of Routes per Shard.
  • Median Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:median  : quantile(0.5, route_metrics_controller_routes_per_shard)
    • Gives the median value of Routes per Shard.
  • Number of Routes summed by TLS Termination type
    • Recording Rule – cluster:openshift_route_info:tls_termination:sum : sum (openshift_route_info) by (tls_termination)
    • Gives the number of Routes for each tls_termination value. The possible values for tls_termination are edge, passthrough and reencrypt. 

The metrics should be allowlisted on the cluster side.

The steps described in Sending metrics via telemetry are needed to be followed. Specifically step 5.

Depends on CFE-478.

Acceptance Criteria:

  • Support for sending the above mentioned metrics from OpenShift clusters to the Red Hat premises by allowlisting metrics on the cluster side

This is a epic bucket for all activities surrounding the creation of declarative approach to release and maintain OLM catalogs.

Epic Goal

  • Allow Operator Authors to easily change the layout of the update graph in a single location so they can version/maintain/release it via git and have more approachable controls about graph vertices than today's replaces, skips and/or skipRange taxonomy
  • Allow Operators authors to have control over channel and bundle channel membership

Why is this important?

  • The imperative catalog maintenance approach so far with opm is being moved to a declarative format (OLM-2127 and OLM-1780) moving away from bundle-level controls but the update graph properties are still attached to a bundle
  • We've received feedback from the RHT internal developer community that maintaining and reasoning about the graph in the context of a single channel is still too hard, even with visualization tools
  • making the update graph easily changeable is important to deliver on some of the promises of declarative index configuration
  • The current interface for declarative index configuration still relies on skips, skipRange and replaces to shape the graph on a per-bundle level - this is too complex at a certain point with a lot of bundles in channels, we need to something at the package level

Scenarios

  1. An Operator author wants to release a new version replacing the latest version published previously
  2. After additional post-GA testing an Operator author wants to establish a new update path to an existing released version from an older, released version
  3. After finding a bug post-GA an Operator author wants to temporarily remove a known to be problematic update path
  4. An automated system wants to push a bundle inbetween an existing update path as a result of an Operator (base) image rebuild (Freshmaker use case)
  5. A user wants to take a declarative graph definition and turn it into a graphical image for visually ensuring the graph looks like they want
  6. An Operator author wants to promote a certain bundle to an additional / different channel to indicate progress in maturity of the operator.

Acceptance Criteria

  • The declarative format has to be user readable and terse enough to make quick modifications
  • The declarative format should be machine writeable (Freshmaker)
  • The update graph is declared and modified in a text based format aligned with the declarative config
  • it has to be possible to add / removes edges at the leave of the graph (releasing/unpublishing a new version)
  • it has to be possible to add/remove new vertices between existing edges (releasing/retracting a new update path)
  • it has to be possible to add/remove new edges in between existing vertices (releasing/unpublishing a version inbetween, freshmaker user case)
  • it has to be possible to change the channel member ship of a bundle after it's published (channel promotion)
  • CI - MUST be running successfully with tests automated
  • it has to be possible to add additional metadata later to implement OLM-2087 and OLM-259 if required

Dependencies (internal and external)

  1. Declarative Index Config (OLM-2127)

Previous Work:

  1. Declarative Index Config (OLM-1780)

Related work

Open questions:

  1. What other manipulation scenarios are required?
    1. Answer: deprecation of content in the spirit of OLM-2087
    2. Answer: cross-channel update hints as described in OLM-2059 if that implementation requires it

 

When working on this Epic, it's important to keep in mind this other potentially related Epic: https://issues.redhat.com/browse/OLM-2276

 

Jira Description

As an OPM maintainer, I want to downstream the PR for (OCP 4.12 ) and backport it to OCP 4.11 so that IIB will NOT be impacted by the changes when it upgrades the OPM version to use the next/future opm upstream release (v1.25.0).

Summary / Background

IIB(the downstream service that manages the indexes) uses the upstream version and if they bump the OPM version to the next/future (v1.25.0) release with this change before having the downstream images updated then: the process to manage the indexes downstream will face issues and it will impact the distributions. 

Acceptance Criteria

  • The changes in the PR are available for the releases which uses FBC -> OCP 4.11, 4.12

Definition of Ready

  • PRs merged into downstream OCP repos branches 4.11/4.12

Definition of Done

  • We checked that the downstream images are with the changes applied (i.e.: we can try to verify in the same way that we checked if the changes were in the downstream for the fix OLM-2639 )

enhance the veneer rendering to be able to read the input veneer data from stdin, via a pipe, in a manner similar to https://dev.to/napicella/linux-pipes-in-golang-2e8j

then the command could be used in a manner similar to many k8s examples like

```shell
opm alpha render-veneer semver -o yaml < infile > outfile
```

Upstream issue link: https://github.com/operator-framework/operator-registry/issues/1011

We need to continue to maintain specific areas within storage, this is to capture that effort and track it across releases.

Goals

  • To allow OCP users and cluster admins to detect problems early and with as little interaction with Red Hat as possible.
  • When Red Hat is involved, make sure we have all the information we need from the customer, i.e. in metrics / telemetry / must-gather.
  • Reduce storage test flakiness so we can spot real bugs in our CI.

Requirements

Requirement Notes isMvp?
Telemetry   No
Certification   No
API metrics   No
     

Out of Scope

n/a

Background, and strategic fit
With the expected scale of our customer base, we want to keep load of customer tickets / BZs low

Assumptions

Customer Considerations

Documentation Considerations

  • Target audience: internal
  • Updated content: none at this time.

Notes

In progress:

  • CI flakes:
    • Configurable timeouts for e2e tests
      • Azure is slow and times out often
      • Cinder times out formatting volumes
      • AWS resize test times out

 

High prio:

  • Env. check tool for VMware - users often mis-configure permissions there and blame OpenShift. If we had a tool they could run, it might report better errors.
    • Should it be part of the installer?
    • Spike exists
  • Add / use cloud API call metrics
    • Helps customers to understand why things are slow
    • Helps build cop to understand a flake
      • With a post-install step that filters data from Prometheus that’s still running in the CI job.
    • Ideas:
      • Cloud is throttling X% of API calls longer than Y seconds
      • Attach / detach / provisioning / deletion / mount / unmount / resize takes longer than X seconds?
    • Capture metrics of operations that are stuck and won’t finish.
      • Sweep operation map from executioner???
      • Report operation metric into the highest bucket after the bucket threshold (i.e. if 10minutes is the last bucket, report an operation into this bucket after 10 minutes and don’t wait for its completion)?
      • Ask the monitoring team?
    • Include in CSI drivers too.
      • With alerts too

Unsorted

  • As the number of storage operators grows, it would be grafana board for storage operators
    • CSI driver metrics (from CSI sidecars + the driver itself  + its operator?)
    • CSI migration?
  • Get aggregated logs in cluster
    • They're rotated too soon
    • No logs from dead / restarted pods
    • No tools to combine logs from multiple pods (e.g. 3 controller managers)
  • What storage issues customers have? it was 22% of all issues.
    • Insufficient docs?
    • Probably garbage
  • Document basic storage troubleshooting for our supports
    • What logs are useful when, what log level to use
    • This has been discussed during the GSS weekly team meeting; however, it would be beneficial to have this documented.
  • Common vSphere errors, their debugging and fixing. 
  • Document sig-storage flake handling - not all failed [sig-storage] tests are ours

Epic Goal

  • Update all images that we ship with OpenShift to the latest upstream releases and libraries.
  • Exact content of what needs to be updated will be determined as new images are released upstream, which is not known at the beginning of OCP development work. We don't know what new features will be included and should be tested and documented. Especially new CSI drivers releases may bring new, currently unknown features. We expect that the amount of work will be roughly the same as in the previous releases. Of course, QE or docs can reject an update if it's too close to deadline and/or looks too big.

Traditionally we did these updates as bugfixes, because we did them after the feature freeze (FF). Trying no-feature-freeze in 4.12. We will try to do as much as we can before FF, but we're quite sure something will slip past FF as usual.

Why is this important?

  • We want to ship the latest software that contains new features and bugfixes.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

(Using separate cards for each driver because these updates can be more complicated)

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

(Using separate cards for each driver because these updates can be more complicated)

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

(Using separate cards for each driver because these updates can be more complicated)

There is a new driver release 5.0.0 since the last rebase that includes snapshot support:

https://github.com/kubernetes-sigs/ibm-vpc-block-csi-driver/releases/tag/v5.0.0

Rebase the driver on v5.0.0 and update the deployments in ibm-vpc-block-csi-driver-operator.
There are no corresponding changes in ibm-vpc-node-label-updater since the last rebase.

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

This includes ibm-vpc-node-label-updater!

(Using separate cards for each driver because these updates can be more complicated)

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

(Using separate cards for each driver because these updates can be more complicated)

Update all OCP and kubernetes libraries in storage operators to the appropriate version for OCP release.

This includes (but is not limited to):

  • Kubernetes:
    • client-go
    • controller-runtime
  • OCP:
    • library-go
    • openshift/api
    • openshift/client-go
    • operator-sdk

Operators:

  • aws-ebs-csi-driver-operator 
  • aws-efs-csi-driver-operator
  • azure-disk-csi-driver-operator
  • azure-file-csi-driver-operator
  • openstack-cinder-csi-driver-operator
  • gcp-pd-csi-driver-operator
  • gcp-filestore-csi-driver-operator
  • manila-csi-driver-operator
  • ovirt-csi-driver-operator
  • vmware-vsphere-csi-driver-operator
  • alibaba-disk-csi-driver-operator
  • ibm-vpc-block-csi-driver-operator
  • csi-driver-shared-resource-operator

 

  • cluster-storage-operator
  • csi-snapshot-controller-operator
  • local-storage-operator
  • vsphere-problem-detector

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

(Using separate cards for each driver because these updates can be more complicated)

The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

The End of General support for vSphere 6.7 will be on October 15, 2022. So, vSphere 6.7 will be deprecated for 4.11.

We want to encourage vSphere customers to upgrade to vSphere 7 in OCP 4.11 since VMware is EOLing (general support) for vSphere 6.7 in Oct 2022.

We want the cluster Upgradeable=false + have a strong alert pointing to our docs / requirements.

related slack: https://coreos.slack.com/archives/CH06KMDRV/p1647541493096729

tldr: three basic claims, the rest is explanation and one example

  1. We cannot improve long term maintainability solely by fixing bugs.
  2. Teams should be asked to produce designs for improving maintainability/debugability.
  3. Specific maintenance items (or investigation of maintenance items), should be placed into planning as peer to PM requests and explicitly prioritized against them.

While bugs are an important metric, fixing bugs is different than investing in maintainability and debugability. Investing in fixing bugs will help alleviate immediate problems, but doesn't improve the ability to address future problems. You (may) get a code base with fewer bugs, but when you add a new feature, it will still be hard to debug problems and interactions. This pushes a code base towards stagnation where it gets harder and harder to add features.

One alternative is to ask teams to produce ideas for how they would improve future maintainability and debugability instead of focusing on immediate bugs. This would produce designs that make problem determination, bug resolution, and future feature additions faster over time.

I have a concrete example of one such outcome of focusing on bugs vs quality. We have resolved many bugs about communication failures with ingress by finding problems with point-to-point network communication. We have fixed the individual bugs, but have not improved the code for future debugging. In so doing, we chase many hard to diagnose problem across the stack. The alternative is to create a point-to-point network connectivity capability. this would immediately improve bug resolution and stability (detection) for kuryr, ovs, legacy sdn, network-edge, kube-apiserver, openshift-apiserver, authentication, and console. Bug fixing does not produce the same impact.

We need more investment in our future selves. Saying, "teams should reserve this" doesn't seem to be universally effective. Perhaps an approach that directly asks for designs and impacts and then follows up by placing the items directly in planning and prioritizing against PM feature requests would give teams the confidence to invest in these areas and give broad exposure to systemic problems.


Relevant links:

Epic Goal

  • Change the default value for the spec.tuningOptions.maxConnections field in the IngressController API, which configures the HAProxy maxconn setting, to 50000 (fifty thousand).

Why is this important?

  • The maxconn setting constrains the number of simultaneous connections that HAProxy accepts. Beyond this limit, the kernel queues incoming connections. 
  • Increasing maxconn enables HAProxy to queue incoming connections intelligently.  In particular, this enables HAProxy to respond to health probes promptly while queueing other connections as needed.
  • The default setting of 20000 has been in place since OpenShift 3.5 was released in April 2017 (see BZ#1405440, commit, RHBA-2017:0884). 
  • Hardware capabilities have increased over time, and the current default is too low for typical modern machine sizes. 
  • Increasing the default setting improves HAProxy's performance at an acceptable cost in the common case. 

Scenarios

  1. As a cluster administrator who is installing OpenShift on typical hardware, I want OpenShift router to be tuned appropriately to take advantage of my hardware's capabilities.

Acceptance Criteria

  • CI is passing. 
  • The new default setting is clearly documented. 
  • A release note informs cluster administrators of the change to the default setting. 

Dependencies (internal and external)

  1. None.

Previous Work (Optional):

  1. The  haproxy-max-connections-tuning enhancement made maxconn configurable without changing the default.  The enhancement document details the tradeoffs in terms of memory for various settings of nbthreads and maxconn with various numbers of routes. 

Open questions::

  1. ...

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

 

OCP/Telco Definition of Done

Epic Template descriptions and documentation.

Epic Goal

Why is this important?

  • This regression is a major performance and stability issue and it has happened once before.

Drawbacks

  • The E2E test may be complex due to trying to determine what DNS pods are responding to DNS requests. This is straightforward using the chaos plugin.

Scenarios

  • CI Testing

Acceptance Criteria

  • CI - MUST be running successfully with tests automated

Dependencies (internal and external)

  1. SDN Team

Previous Work (Optional):

  1. N/A

Open questions::

  1. Where do these E2E test go? SDN Repo? DNS Repo?

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub
    Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub
    Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Enable the chaos plugin https://coredns.io/plugins/chaos/ in our CoreDNS configuration so that we can use a DNS query to easily identify what DNS pods are responding to our requests.

Feature Overview

  • This Section:* High-Level description of the feature ie: Executive Summary
  • Note: A Feature is a capability or a well defined set of functionality that delivers business value. Features can include additions or changes to existing functionality. Features can easily span multiple teams, and multiple releases.

 

Goals

  • This Section:* Provide high-level goal statement, providing user context and expected user outcome(s) for this feature

 

Requirements

  • This Section:* A list of specific needs or objectives that a Feature must deliver to satisfy the Feature.. Some requirements will be flagged as MVP. If an MVP gets shifted, the feature shifts. If a non MVP requirement slips, it does not shift the feature.

 

Requirement Notes isMvp?
CI - MUST be running successfully with test automation This is a requirement for ALL features. YES
Release Technical Enablement Provide necessary release enablement details and documents. YES

 

(Optional) Use Cases

This Section: 

  • Main success scenarios - high-level user stories
  • Alternate flow/scenarios - high-level user stories
  • ...

 

Questions to answer…

  • ...

 

Out of Scope

 

Background, and strategic fit

This Section: What does the person writing code, testing, documenting need to know? What context can be provided to frame this feature.

 

Assumptions

  • ...

 

Customer Considerations

  • ...

 

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?  
  • New Content, Updates to existing content,  Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

When OCP is performing cluster upgrade user should be notified about this fact.

There are two possibilities how to surface the cluster upgrade to the users:

  • Display a console notification throughout OCP web UI saying that the cluster is currently under upgrade.
  • Global notification throughout OCP web UI saying that the cluster is currently under upgrade.
  • Have an alert firing for all the users of OCP stating the cluster is undergoing an upgrade. 

 

AC:

  • Console-operator will create a ConsoleNotification CR when the cluster is being upgraded. Once the upgrade is done console-operator will remote that CR. These are the three statuses based on which we are determining if the cluster is being upgraded.
  • Add unit tests

 

Note: We need to decide if we want to distinguish this particular notification by a different color? ccing Ali Mobrem 

 

Created from: https://issues.redhat.com/browse/RFE-3024

As a console user I want to have option to:

  • Restart Deployment
  • Retry latest DeploymentConfig if it failed

 

For Deployments we will add the 'Restart rollout' action button. This action will PATCH the Deployment object's 'spec.template.metadata.annotations' block, by adding 'openshift.io/restartedAt: <actual-timestamp>' annotation. This will restart the deployment, by creating a new ReplicaSet.

  • action is disabled if:
    • Deployment is paused

 

For DeploymentConfig we will add 'Retry rollout' action button.  This action will PATCH the latest revision of ReplicationController object's 'metadata.annotations' block by setting 'openshift.io/deployment/phase: "New"' and removing openshift.io/deployment.cancelled and openshift.io/deployment.status-reason.

  • action is enabled if:
    • latest revision of the ReplicationController resource is in Failed phase
  • action is disabled if:
    • latest revision of the ReplicationController resource is in Complete phase
    • DeploymentConfig does not have any rollouts
    • DeploymentConfigs is paused

 

Acceptance Criteria:

  • Add the 'Restart rollout' action button for the Deployment resource to both action menu and kebab menu
  • Add the 'Retry rollout' action button for the DeploymentConfig resource to both action menu and kebab menu

 

BACKGROUND:

OpenShift console will be updated to allow rollout restart deployment from the console itself.

Currently, from the OpenShift console, for the resource “deploymentconfigs” we can only start and pause the rollout, and for the resource “deployment” we can only resume the rollout. None of the resources (deployment & deployment config) has this option to restart the rollout. So, that is the reason why the customer wants this functionality to perform the same action from the CLI as well as the OpenShift console.

The customer wants developers who are not fluent with the oc tool and terminal utilities, can use the console instead of the terminal to restart deployment, just like we use to do it through CLI using the command “oc rollout restart deploy/<deployment-name>“.
Usually when developers change the config map that deployment uses they have to restart pods. Currently, the developers have to use the oc rollout restart deployment command. The customer wants the functionality to get this button/menu to perform the same action from the console as well.

Design
Doc: https://docs.google.com/document/d/1i-jGtQGaA0OI4CYh8DH5BBIVbocIu_dxNt3vwWmPZdw/edit

As a developer, I want to make status.HostIP for Pods visible in the Pod details page of the OCP Web Console. Currently there is no way to view the node IP for a Pod in the OpenShift Web Console.  When viewing a Pod in the console, the field status.HostIP is not visible.

 

Acceptance criteria:

  • Make pod's HostIP field visible in the pod details page, similarly to PodIP field

Feature Overview

  • As an infrastructure owner, I want a repeatable method to quickly deploy the initial OpenShift cluster.
  • As an infrastructure owner, I want to install the first (management, hub, “cluster 0”) cluster to manage other (standalone, hub, spoke, hub of hubs) clusters.

Goals

  • Enable customers and partners to successfully deploy a single “first” cluster in disconnected, on-premises settings

Requirements

4.11 MVP Requirements

  • Customers and partners needs to be able to download the installer
  • Enable customers and partners to deploy a single “first” cluster (cluster 0) using single node, compact, or highly available topologies in disconnected, on-premises settings
  • Installer must support advanced network settings such as static IP assignments, VLANs and NIC bonding for on-premises metal use cases, as well as DHCP and PXE provisioning environments.
  • Installer needs to support automation, including integration with third-party deployment tools, as well as user-driven deployments.
  • In the MVP automation has higher priority than interactive, user-driven deployments.
  • For bare metal deployments, we cannot assume that users will provide us the credentials to manage hosts via their BMCs.
  • Installer should prioritize support for platforms None, baremetal, and VMware.
  • The installer will focus on a single version of OpenShift, and a different build artifact will be produced for each different version.
  • The installer must not depend on a connected registry; however, the installer can optionally use a previously mirrored registry within the disconnected environment.

Use Cases

  • As a Telco partner engineer (Site Engineer, Specialist, Field Engineer), I want to deploy an OpenShift cluster in production with limited or no additional hardware and don’t intend to deploy more OpenShift clusters [Isolated edge experience].
  • As a Enterprise infrastructure owner, I want to manage the lifecycle of multiple clusters in 1 or more sites by first installing the first  (management, hub, “cluster 0”) cluster to manage other (standalone, hub, spoke, hub of hubs) clusters [Cluster before your cluster].
  • As a Partner, I want to package OpenShift for large scale and/or distributed topology with my own software and/or hardware solution.
  • As a large enterprise customer or Service Provider, I want to install a “HyperShift Tugboat” OpenShift cluster in order to offer a hosted OpenShift control plane at scale to my consumers (DevOps Engineers, tenants) that allows for fleet-level provisioning for low CAPEX and OPEX, much like AKS or GKE [Hypershift].
  • As a new, novice to intermediate user (Enterprise Admin/Consumer, Telco Partner integrator, RH Solution Architect), I want to quickly deploy a small OpenShift cluster for Poc/Demo/Research purposes.

Questions to answer…

  •  

Out of Scope

Out of scope use cases (that are part of the Kubeframe/factory project):

  • As a Partner (OEMs, ISVs), I want to install and pre-configure OpenShift with my hardware/software in my disconnected factory, while allowing further (minimal) reconfiguration of a subset of capabilities later at a different site by different set of users (end customer) [Embedded OpenShift].
  • As an Infrastructure Admin at an Enterprise customer with multiple remote sites, I want to pre-provision OpenShift centrally prior to shipping and activating the clusters in remote sites.

Background, and strategic fit

  • This Section: What does the person writing code, testing, documenting need to know? What context can be provided to frame this feature.

Assumptions

  1. The user has only access to the target nodes that will form the cluster and will boot them with the image presented locally via a USB stick. This scenario is common in sites with restricted access such as government infra where only users with security clearance can interact with the installation, where software is allowed to enter in the premises (in a USB, DVD, SD card, etc.) but never allowed to come back out. Users can't enter supporting devices such as laptops or phones.
  2. The user has access to the target nodes remotely to their BMCs (e.g. iDrac, iLo) and can map an image as virtual media from their computer. This scenario is common in data centers where the customer provides network access to the BMCs of the target nodes.
  3. We cannot assume that we will have access to a computer to run an installer or installer helper software.

Customer Considerations

  • ...

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

 

References

 

 

Epic Goal

As an OpenShift infrastructure owner, I want to deploy a cluster zero with RHACM or MCE and have the required components installed when the installation is completed

Why is this important?

BILLI makes it easier to deploy a cluster zero. BILLI users know at installation time what the purpose of their cluster is when they plan the installation. Day-2 steps are necessary to install operators and users, especially when automating installations, want to finish the installation flow when their required components are installed.

Acceptance Criteria

  • A user can provide MCE manifests and have it installed without additional manual steps after the installation is completed
  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story:

As a customer, I want to be able to:

  • Install MCE with the agent-installer

so that I can achieve

  • create an MCE hub with my openshift install

Acceptance Criteria:

Description of criteria:

  • Upstream documentation including examples of the extra manifests needed
  • Unit tests that include MCE extra manifests
  • Ability to install MCE using agent-installer is tested
  • Point 3

(optional) Out of Scope:

We are only allowing the user to provide extra manifests to install MCE at this time. We are not adding an option to "install mce" on the command line (or UI)

Engineering Details:

This requires/does not require a design proposal.
This requires/does not require a feature gate.

User Story:

As a customer, I want to be able to:

  • Install MCE with the agent-installer

so that I can achieve

  • create an MCE hub with my openshift install

Acceptance Criteria:

Description of criteria:

  • Upstream documentation including examples of the extra manifests needed
  • Unit tests that include MCE extra manifests
  • Ability to install MCE using agent-installer is tested
  • Point 3

(optional) Out of Scope:

We are only allowing the user to provide extra manifests to install MCE at this time. We are not adding an option to "install mce" on the command line (or UI)

Engineering Details:

This requires/does not require a design proposal.
This requires/does not require a feature gate.

Epic Goal

As a OpenShift infrastructure owner, I want to deploy OpenShift clusters with dual-stack IPv4/IPv6

As a OpenShift infrastructure owner, I want to deploy OpenShift clusters with single-stack IPv6

Why is this important?

IPv6 and dual-stack clusters are requested often by customers, especially from Telco customers. Working with dual-stack clusters is a requirement for many but also a transition into a single-stack IPv6 clusters, which for some of our users is the final destination.

Acceptance Criteria

  • Agent-based installer can deploy IPv6 clusters
  • Agent-based installer can deploy dual-stack clusters
  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Previous Work

Karim's work proving how agent-based can deploy IPv6: IPv6 deploy with agent based installer]

Done Checklist * CI - CI is running, tests are automated and merged.

  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>|

For dual-stack installations the agent-cluster-install.yaml must have both an IPv4 and IPv6 subnet in the networkking.MachineNetwork or assisted-service will throw an error. This field is in InstallConfig but it must be added to agent-cluster-install in its Generate().

For IPv4 and IPv6 installs, setting up the MachineNetwork is not needed but it also does not cause problems if its set, so it should be fine to set it all times.

Set the ClusterDeployment CRD to deploy OpenShift in FIPS mode and make sure that after deployment the cluster is set in that mode

In order to install FIPS compliant clusters, we need to make sure that installconfig + agentoconfig based deployments take into account the FIPS config in installconfig.

This task is about passing the config to agentclusterinstall so it makes it into the iso. Once there, AGENT-374 will give it to assisted service

OC mirror is GA product as of Openshift 4.11 .

The goal of this feature is to solve any future customer request for new features or capabilities in OC mirror 

Epic Goal

  • Mirror to mirror operations and custom mirroring flows required by IBM CloudPak catalog management

Why is this important?

  • IBM needs additional customization around the actual mirroring of images to enable CloudPaks to fully adopt OLM-style operator packaging and catalog management
  • IBM CloudPaks introduce additional compute architectures, increasing the download volume by 2/3rds to day, we need the ability to effectively filter non-required image versions of OLM operator catalogs during filtering for other customers that only require a single or a subset of the available image architectures
  • IBM CloudPaks regularly run on older OCP versions like 4.8 which require additional work to be able to read the mirrored catalog produced by oc mirror

Scenarios

  1. Customers can use the oc utility and delegate the actual image mirror step to another tool
  2. Customers can mirror between disconnected registries using the oc utility
  3. The oc utility supports filtering manifest lists in the context of multi-arch images according to the sparse manifest list proposal in the distribution spec

Acceptance Criteria

  • Customers can use the oc utility to mirror between two different air-gapped environments
  • Customers can specify the desired computer architectures and oc mirror will create sparse manifest lists in the target registry as a result

Dependencies (internal and external)

Previous Work:

  1. WRKLDS-369
  2. Disconnected Mirroring Improvement Proposal

Related Work:

  1. https://github.com/opencontainers/distribution-spec/pull/310
  2. https://github.com/distribution/distribution/pull/3536
  3. https://docs.google.com/document/d/10ozLoV7sVPLB8msLx4LYamooQDSW-CAnLiNiJ9SER2k/edit?usp=sharing

Pre-Work Objectives

Since some of our requirements from the ACM team will not be available for the 4.12 timeframe, the team should work on anything we can get done in the scope of the console repo so that when the required items are available in 4.13, we can be more nimble in delivering GA content for the Unified Console Epic.

Overall GA Key Objective
Providing our customers with a single simplified User Experience(Hybrid Cloud Console)that is extensible, can run locally or in the cloud, and is capable of managing the fleet to deep diving into a single cluster. 
Why customers want this?

  1. Single interface to accomplish their tasks
  2. Consistent UX and patterns
  3. Easily accessible: One URL, one set of credentials

Why we want this?

  • Shared code -  improve the velocity of both teams and most importantly ensure consistency of the experience at the code level
  • Pre-built PF4 components
  • Accessibility & i18n
  • Remove barriers for enabling ACM

Phase 2 Goal: Productization of the united Console 

  1. Enable user to quickly change context from fleet view to single cluster view
    1. Add Cluster selector with “All Cluster” Option. “All Cluster” = ACM
    2. Shared SSO across the fleet
    3. Hub OCP Console can connect to remote clusters API
    4. When ACM Installed the user starts from the fleet overview aka “All Clusters”
  2. Share UX between views
    1. ACM Search —> resource list across fleet -> resource details that are consistent with single cluster details view
    2. Add Cluster List to OCP —> Create Cluster

As a developer I would like to disable clusters like *KS that we can't support for multi-cluster (for instance because we can't authenticate). The ManagedCluster resource has a vendor label that we can use to know if the cluster is supported.

cc Ali Mobrem Sho Weimer Jakub Hadvig 

UPDATE: 9/20/22 : we want an allow-list with OpenShift, ROSA, ARO, ROKS, and  OpenShiftDedicated

Acceptance criteria:

  • Investigate if console-operator should pass info about which cluster are supported and unsupported to the frontend
  • Unsupported clusters should not appear in the cluster dropdown
  • Unsupported clusters based off
    • defined vendor label
    • non 4.x ocp clusters

Feature Overview

RHEL CoreOS should be updated to RHEL 9.2 sources to take advantage of newer features, hardware support, and performance improvements.

 

Requirements

  • RHEL 9.x sources for RHCOS builds starting with OCP 4.13 and RHEL 9.2.

 

Requirement Notes isMvp?
CI - MUST be running successfully with test automation This is a requirement for ALL features. YES
Release Technical Enablement Provide necessary release enablement details and documents. YES

(Optional) Use Cases

  • 9.2 Preview via Layering No longer necessary assuming we stay the course of going all in on 9.2

Assumptions

  • ...

Customer Considerations

  • ...

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

PROBLEM

We would like to improve our signal for RHEL9 readiness by increasing internal engineering engagement and external partner engagement on our community OpehShift offering, OKD.

PROPOSAL

Adding OKD to run on SCOS (a CentOS stream for CoreOS) brings the community offering closer to what a partner or an internal engineering team might expect on OCP.

ACCEPTANCE CRITERIA

Image has been switched/included: 

DEPENDENCIES

The SCOS build payload.

RELATED RESOURCES

OKD+SCOS proposal: https://docs.google.com/presentation/d/1_Xa9Z4tSqB7U2No7WA0KXb3lDIngNaQpS504ZLrCmg8/edit#slide=id.p

OKD+SCOS work draft: https://docs.google.com/document/d/1cuWOXhATexNLWGKLjaOcVF4V95JJjP1E3UmQ2kDVzsA/edit

 

Acceptance Criteria

A stable OKD on SCOS is built and available to the community sprintly.

 

This comes up when installing ipi-on-aws on arm64 with the custom payload build at quay.io/aleskandrox/okd-release:4.12.0-0.okd-centos9-full-rebuild-arm64 that is using scos as machine-content-os image

 

```

[root@ip-10-0-135-176 core]# crictl logs c483c92e118d8
2022-08-11T12:19:39+00:00 [cnibincopy] FATAL ERROR: Unsupported OS ID=scos
```

 

The probable fix has to land on https://github.com/openshift/cluster-network-operator/blob/master/bindata/network/multus/multus.yaml#L41-L53

Overview 

HyperShift came to life to serve multiple goals, some are main near-term, some are secondary that serve well long-term. 

Main Goals for hosted control planes (HyperShift)

  • Optimize OpenShift for Cost/footprint/ which improves our competitive stance against the *KSes
  • Establish separation of concerns which makes it more resilient for SRE to manage their workload clusters (be it security, configuration management, etc).
  • Simplify and enhance multi-cluster management experience especially since multi-cluster is becoming an industry need nowadays. 

Secondary Goals

HyperShift opens up doors to penetrate the market. HyperShift enables true hybrid (CP and Workers decoupled, mixed IaaS, mixed Arch,...). An architecture that opens up more options to target new opportunities in the cloud space. For more details on this one check: Hosted Control Planes (aka HyperShift) Strategy [Live Document]

 

Hosted Control Planes (HyperShift) Map 

To bring hosted control planes to our customers, we need the means to ship it. Today MCE is how HyperShift shipped, and installed so that customers can use it. There are two main customers for hosted-control-planes: 

 

  • Self-managed: In that case, Red Hat would provide hosted control planes as a service that is managed and SREed by the customer for their tenants (hence “self”-managed). In this management model, our external customers are the direct consumers of the multi-cluster control plane as a servie. Once MCE is installed, they can start to self-service dedicated control planes. 

 

  • Managed: This is OpenShift as a managed service, today we only “manage” the CP, and share the responsibility for other system components, more info here. To reduce management costs incurred by service delivery organizations which translates to operating profit (by reducing variable costs per control-plane), as well as to improve user experience, lower platform overhead (allow customers to focus mostly on writing applications and not concern themselves with infrastructure artifacts), and improve the cluster provisioning experience. HyperShift is shipped via MCE, and delivered to Red Hat managed SREs (same consumption route). However, for managed services, additional tooling needs to be refactored to support the new provisioning path. Furthermore, unlike self-managed where customers are free to bring their own observability stack, Red Hat managed SREs need to observe the managed fleet to ensure compliance with SLOs/SLIs/…

 

If you have noticed, MCE is the delivery mechanism for both management models. The difference between managed and self-managed is the consumer persona. For self-managed, it's the customer SRE for managed its the RH SRE

High-level Requirements

For us to ship HyperShift in the product (as hosted control planes) in either management model, there is a necessary readiness checklist that we need to satisfy. Below are the high-level requirements needed before GA: 

 

  • Hosted control planes fits well with our multi-cluster story (with MCE)
  • Hosted control planes APIs are stable for consumption  
  • Customers are not paying for control planes/infra components.  
  • Hosted control planes has an HA and a DR story
  • Hosted control planes is in parity with top-level add-on operators 
  • Hosted control planes reports metrics on usage/adoption
  • Hosted control planes is observable  
  • HyperShift as a backend to managed services is fully unblocked.

 

Please also have a look at our What are we missing in Core HyperShift for GA Readiness? doc. 

Hosted control planes fits well with our multi-cluster story

Multi-cluster is becoming an industry need today not because this is where trend is going but because it’s the only viable path today to solve for many of our customer’s use-cases. Below is some reasoning why multi-cluster is a NEED:

 

 

As a result, multi-cluster management is a defining category in the market where Red Hat plays a key role. Today Red Hat solves for multi-cluster via RHACM and MCE. The goal is to simplify fleet management complexity by providing a single pane of glass to observe, secure, police, govern, configure a fleet. I.e., the operand is no longer one cluster but a set, a fleet of clusters. 

HyperShift logically centralized architecture, as well as native separation of concerns and superior cluster lifecyle management experience, makes it a great fit as the foundation of our multi-cluster management story. 

Thus the following stories are important for HyperShift: 

  • When lifecycling OpenShift clusters (for any OpenShift form factor) on any of the supported providers from MCE/ACM/OCM/CLI as a Cluster Service Consumer  (RH managed SRE, or self-manage SRE/admin):
  • I want to be able to use a consistent UI so I can manage and operate (observe, govern,...) a fleet of clusters.
  • I want to specify HA constraints (e.g., deploy my clusters in different regions) while ensuring acceptable QoS (e.g., latency boundaries) to ensure/reduce any potential downtime for my workloads. 
  • When operating OpenShift clusters (for any OpenShift form factor) on any of the supported provider from MCE/ACM/OCM/CLI as a Cluster Service Consumer  (RH managed SRE, or self-manage SRE/admin):
  • I want to be able to backup any critical data so I am able to restore them in case of hosting service cluster (management cluster) failure. 

Refs:

Hosted control planes APIs are stable for consumption.

 

HyperShift is the core engine that will be used to provide hosted control-planes for consumption in managed and self-managed. 

 

Main user story:  When life cycling clusters as a cluster service consumer via HyperShift core APIs, I want to use a stable/backward compatible API that is less susceptible to future changes so I can provide availability guarantees. 

 

Ref: What are we missing in Core HyperShift for GA Readiness?

Customers are not paying for control planes/infra components. 

 

Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.

Assumptions

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure , and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

HyperShift - proposed cuts from data plane

HyperShift has an HA and a DR story

When operating OpenShift clusters (for any OpenShift form factor) from MCE/ACM/OCM/CLI as a Cluster Service Consumer  (RH managed SRE, or self-manage SRE/admin) I want to be able to migrate CPs from one hosting service cluster to another:

  • as means for disaster recovery in the case of total failure
  • so that scaling pressures on a management cluster can be mitigated or a management cluster can be decommissioned.

More information: 

 

Hosted control planes reports metrics on usage/adoption

To understand usage patterns and inform our decision making for the product. We need to be able to measure adoption and assess usage.

See Hosted Control Planes (aka HyperShift) Strategy [Live Document]

Hosted control plane is observable  

Whether it's managed or self-managed, it’s pertinent to report health metrics to be able to create meaningful Service Level Objectives (SLOs), alert of failure to meet our availability guarantees. This is especially important for our managed services path. 

HyperShift is in parity with top-level add-on operators

https://issues.redhat.com/browse/OCPPLAN-8901 

Unblock HyperShift as a backend to managed services

HyperShift for managed services is a strategic company goal as it improves usability, feature, and cost competitiveness against other managed solutions, and because managed services/consumption-based cloud services is where we see the market growing (customers are looking to delegate platform overhead). 

 

We should make sure our SD milestones are unblocked by the core team. 

 

Note 

This feature reflects HyperShift core readiness to be consumed. When all related EPICs and stories in this EPIC are complete HyperShift can be considered ready to be consumed in GA form. This does not describe a date but rather the readiness of core HyperShift to be consumed in GA form NOT the GA itself.

- GA date for self-managed will be factoring in other inputs such as adoption, customer interest/commitment, and other factors. 
- GA dates for ROSA-HyperShift are on track, tracked in milestones M1-7 (have a look at https://issues.redhat.com/browse/OCPPLAN-5771

Epic Goal*

The goal is to split client certificate trust chains from the global Hypershift root CA.

 
Why is this important? (mandatory)

This is important to:

  • assure a workload can be run on any kind of OCP flavor
  • reduce the blast radius in case of a sensitive material leak
  • separate trust to allow more granular control over client certificate authentication

 
Scenarios (mandatory) 

Provide details for user scenarios including actions to be performed, platform specifications, and user personas.  

  1. I would like to be able to run my workloads on any OpenShift-like platform.
    My workloads allow components to authenticate using client certificates based
    on a trust bundle that I am able to retrieve from the cluster.
  1. I don't want my users to have access to any CA bundle that would allow them
    to trust a random certificate from the cluster for client certificate authentication.

 
Dependencies (internal and external) (mandatory)

Hypershift team needs to provide us with code reviews and merge the changes we are to deliver

Contributing Teams(and contacts) (mandatory) 

  • Development - OpenShift Auth, Hypershift
  • Documentation -OpenShift Auth Docs team
  • QE - OpenShift Auth QE
  • PX - I have no idea what PX is
  • Others - others

Acceptance Criteria (optional)

The serviceaccount CA bundle automatically injected to all pods cannot be used to authenticate any client certificate generated by the control-plane.

Drawbacks or Risk (optional)

Risk: there is a throbbing time pressure as this should be delivered before first stable Hypershift release

Done - Checklist (mandatory)

  • CI Testing -  Basic e2e automationTests are merged and completing successfully
  • Documentation - Content development is complete.
  • QE - Test scenarios are written and executed successfully.
  • Technical Enablement - Slides are complete (if requested by PLM)
  • Engineering Stories Merged
  • All associated work items with the Epic are closed
  • Epic status should be “Release Pending” 

Feature Overview (aka. Goal Summary)  

The MCO should properly report its state in a way that's consistent and able to be understood by customers, troubleshooters, and maintainers alike. 

Some customer cases have revealed scenarios where the MCO state reporting is misleading and therefore could be unreliable to base decisions and automation on.

In addition to correcting some incorrect states, the MCO will be enhanced for a more granular view of update rollouts across machines.

The MCO should properly report its state in a way that's consistent and able to be understood by customers, troubleshooters, and maintainers alike. 

For this epic, "state" means "what is the MCO doing?" – so the goal here is to try to make sure that it's always known what the MCO is doing. 

This includes: 

  • Conditions
  • Some Logging 
  • Possibly Some Events 

While this probably crosses a little bit into the "status" portion of certain MCO objects, as some state is definitely recorded there, this probably shouldn't turn into a "better status reporting" epic.  I'm interpreting "status" to mean "how is it going" so status is maybe a "detail attached to a state". 

 

Exploration here: https://docs.google.com/document/d/1j6Qea98aVP12kzmPbR_3Y-3-meJQBf0_K6HxZOkzbNk/edit?usp=sharing

 

https://docs.google.com/document/d/17qYml7CETIaDmcEO-6OGQGNO0d7HtfyU7W4OMA6kTeM/edit?usp=sharing

 

The current property description is:

configuration represents the current MachineConfig object for the machine config pool.

But in a 4.12.0-ec.4 cluster, the actual semantics seem to be something closer to "the most recent rendered config that we completely leveled on". We should at least update the godocs to be more specific about the intended semantics. And perhaps consider adjusting the semantics?

Complete Epics

This section includes Jira cards that are linked to an Epic, but the Epic itself is not linked to any Feature. These epics were completed when this image was assembled

Epic Goal

  • Update OpenShift components that are owned by the Builds + Jenkins Team to use Kubernetes 1.25

Why is this important?

  • Our components need to be updated to ensure that they are using the latest bug/CVE fixes, features, and that they are API compatible with other OpenShift components.

Acceptance Criteria

  • Existing CI/CD tests must be passing

This is epic tracks "business as usual" requirements / enhancements / bug fixing of Insights Operator.

Today the links point at a rule-scoped page, but that page lacks information about recommended resolution.  You can click through by cluster ID to your specific cluster and get that recommendation advice, but it would be more convenient and less confusing for customers if we linked directly to the cluster-scoped recommendation page.

We can implement by updating the template here to be:

fmt.Sprintf("https://console.redhat.com/openshift/insights/advisor/clusters/%s?first=%s%%7C%s", clusterID, ruleIDStr, rec.ErrorKey)

or something like that.

 

unknowns

request is clear, solution/implementation to be further clarified

This epic contains all the Dynamic Plugins related stories for OCP release-4.11 

Epic Goal

  • Track all the stories under a single epic

Acceptance Criteria

  •  

This story only covers API components. We will create a separate story for other utility functions.

Today we are generating documentation for Console's Dynamic Plugin SDK in
frontend/packages/dynamic-plugin-sdk. We are missing ts-doc for a set of hooks and components.

We are generating the markdown from the dynamic-plugin-sdk using

yarn generate-doc

Here is the list of the API that the dynamic-plugin-sdk is exposing:

https://gist.github.com/spadgett/0ddefd7ab575940334429200f4f7219a

Acceptance Criteria:

  • Add missing jsdocs for the API that dynamic-plugin-sdk exposes

Out of Scope:

  • This does not include work for integrating the API docs into the OpenShift docs
  • This does not cover other public utilities, only components.

This epic contains all the Dynamic Plugins related stories for OCP release-4.12

Epic Goal

  • Track all the stories under a single epic

Acceptance Criteria

when defining two proxy endpoints, 
apiVersion: console.openshift.io/v1alpha1
kind: ConsolePlugin
metadata:
...
name: forklift-console-plugin
spec:
displayName: Console Plugin Template
proxy:

  • alias: forklift-inventory
    authorize: true
    service:
    name: forklift-inventory
    namespace: konveyor-forklift
    port: 8443
    type: Service
  • alias: forklift-must-gather-api
    authorize: true
    service:
    name: forklift-must-gather-api
    namespace: konveyor-forklift
    port: 8443
    type: Service

service:
basePath: /
I get two proxy endpoints
/api/proxy/plugin/forklift-console-plugin/forklift-inventory
and
/api/proxy/plugin/forklift-console-plugin/forklift-must-gather-api

but both proxy to the `forklift-must-gather-api` service

e.g.
curl to:
[server url]/api/proxy/plugin/forklift-console-plugin/forklift-inventory
will point to the `forklift-must-gather-api` service, instead of the `forklift-inventory` service

Based on API review CONSOLE-3145, we have decided to deprecate the following APIs:

  • useAccessReviewAllowed (use useAccessReview instead)
  • useSafetyFirst

cc Andrew Ballantyne Bryan Florkiewicz 

Currently our `api.md` does not generate docs with "tags" (aka `@deprecated`) – we'll need to add that functionality to the `generate-doc.ts` script. See the code that works for `console-extensions.md`

The console has good error boundary components that are useful for dynamic plugin.
Exposing them will enable the plugins to get the same look and feel of handling react errors as console
The minimum requirement right now is to expose the ErrorBoundaryFallbackPage component from
https://github.com/openshift/console/blob/master/frontend/packages/console-shared/src/components/error/fallbacks/ErrorBoundaryFallbackPage.tsx

The extension `console.dashboards/overview/detail/item` doesn't constrain the content to fit the card.

The details-card has an expectation that a <dd> item will be the last item (for spacing between items). Our static details-card items use a component called 'OverviewDetailItem'. This isn't enforced in the extension and can cause undesired padding issues if they just do whatever they want.

I feel our approach here should be making the extension take the props of 'OverviewDetailItem' where 'children' is the new 'component'.

Acceptance Criteria:

  • Deprecate the old extension (in docs, with date/stamp)
  • Make a new extension that applies a stricter type
  • Include this new extension next to the old one (with the error boundary around it)

Move `frontend/public/components/nav` to `packages/console-app/src/components/nav` and address any issues resulting from the move.

There will be some expected lint errors relating to cyclical imports. These will require some refactoring to address.

We should have a global notification or the `Console plugins` page (e.g., k8s/cluster/operator.openshift.io~v1~Console/cluster/console-plugins) should alert users when console operator `spec.managementState` is `Unmanaged` as changes to `enabled` for plugins will have no effect.

We neither use nor support static plugin nav extensions anymore so we should remove the API in the static plugin SDK and get rid of related cruft in our current nav components.

 

AC: Remove static plugin nav extensions code. Check the navigation code for any references to the old API.

`@openshift-console/plugin-shared` (NPM) is a package that will contain shared components that can be upversioned separately by the Plugins so they can keep core compatibility low but upversion and support more shared components as we need them.

This isn't documented today. We need to do that.

Acceptance Criteria

  • Add a note in the "SDK packages" section of the README about the existence of this package and it's purpose
    • The purpose of being a static utility delivery library intended not to be tied to OpenShift Console versions and compatible with multiple version of OpenShift Console

To align with https://github.com/openshift/dynamic-plugin-sdk, plugin metadata field dependencies as well as the @console/pluginAPI entry contained within should be made optional.

If a plugin doesn't declare the @console/pluginAPI dependency, the Console release version check should be skipped for that plugin.

Following https://coreos.slack.com/archives/C011BL0FEKZ/p1650640804532309, it would be useful for us (network observability team) to have access to ResourceIcon in dynamic-plugin-sdk.

Currently ResourceLink is exported but not ResourceIcon

 

AC:

  • Require the ResourceIcon  from public to dynamic-plugin-sdk
  • Add the component to the dynamic-demo-plugin
  • Add a CI test to check for the ResourceIcon component

 

During the development of https://issues.redhat.com/browse/CONSOLE-3062, it was determined additional information is needed in order to assist a user when troubleshooting a Failed plugin (see https://github.com/openshift/console/pull/11664#issuecomment-1159024959). As it stands today, there is no data available to the console to relay to the user regarding why the plugin Failed. Presumably, a message should be added to NotLoadedDynamicPlugin to address this gap.

 

AC: Add `message` property to NotLoadedDynamicPluginInfo type.

Currently the ConsolePlugins API version is v1alpha1. Since we are going GA with dynamic plugins we should be creating a v1 version.

This would require updates in following repositories:

  1. openshift/api (add the v1 version and generate a new CRD)
  2. openshift/client-go (picku the changes in the openshift/api repo and generate clients & informers for the new v1 version)
  3. openshift/console-operator repository will using both the new v1 version and v1alpha1 in code and manifests folder.

AC:

  • both v1 and v1alpha1 ConsolePlugins should be passed to the console-config.yaml when the plugins are enabled and present on the cluster.

 

NOTE: This story does not include the conversion webhook change which will be created as a follow on story

This epic contains all the OLM related stories for OCP release-4.12

Epic Goal

  • Track all the stories under a single epic

This enhancement Introduces support for provisioning and upgrading heterogenous architecture clusters in phases.

 

We need to scan through the compute nodes and build a set of supported architectures from those. Each node on the cluster has a label for architecture: e.g. `kuberneties.io/arch:arm64`, `kubernetes.io/arch:amd64` etc. Based on the set of supported architectures console will need to surface only those operators in the Operator Hub, which are supported on our Nodes. Each operator's PackageManifest contains a labels that indicates whats the operator's supported architecture, e.g.  `operatorframework.io/arch.s390x: supported`. An operator can be supported on multiple architectures

AC:

  1. Implement logic in the console's backend to read the set of architecture types from console-config.yaml and set it as a SERVER_FLAG.nodeArchitectures (Change similar to https://github.com/openshift/console/commit/39aabe171a2e89ed3757ac2146d252d087fdfd33)
  2. In Operator hub render only operators that are support on any given node, based on the SERVER_FLAG.nodeArchitectures field implemented in CONSOLE-3242.

 

OS and arch filtering: https://github.com/openshift/console/blob/2ad4e17d76acbe72171407fc1c66ca4596c8aac4/frontend/packages/operator-lifecycle-manager/src/components/operator-hub/operator-hub-items.tsx#L49-L86

 

@jpoulin is good to ask about heterogeneous clusters.

This enhancement Introduces support for provisioning and upgrading heterogenous architecture clusters in phases.

 

We need to scan through the compute nodes and build a set of supported architectures from those. Each node on the cluster has a label for architecture: e.g. kubernetes.io/arch=arm64, kubernetes.io/arch=amd64 etc. Based on the set of supported architectures console will need to surface only those operators in the Operator Hub, which are supported on our Nodes.

 

AC: 

  1. Implement logic in the console-operator that will scan though all the nodes and build a set of all the architecture types that the cluster nodes run on and pass it to the console-config.yaml
  2. Add unit and e2e test cases in the console-operator repository.

 

@jpoulin is good to ask about heterogeneous clusters.

An epic we can duplicate for each release to ensure we have a place to catch things we ought to be doing regularly but can tend to fall by the wayside.

As a developer, I want to be able to clean up the css markup after making the css / scss changes required for dark mode and remove any old unused css / scss content. 

 

Acceptance criteria:

  • Remove any unused scss / css content after revamping for dark mode

Epic Goal

  • Enable OpenShift IPI Installer to deploy OCP to a shared VPC in GCP.
  • The host project is where the VPC and subnets are defined. Those networks are shared to one or more service projects.
  • Objects created by the installer are created in the service project where possible. Firewall rules may be the only exception.
  • Documentation outlines the needed minimal IAM for both the host and service project.

Why is this important?

  • Shared VPC's are a feature of GCP to enable granular separation of duties for organizations that centrally manage networking but delegate other functions and separation of billing. This is used more often in larger organizations where separate teams manage subsets of the cloud infrastructure. Enterprises that use this model would also like to create IPI clusters so that they can leverage the features of IPI. Currently organizations that use Shared VPC's must use UPI and implement the features of IPI themselves. This is repetative engineering of little value to the customer and an increased risk of drift from upstream IPI over time. As new features are built into IPI, organizations must become aware of those changes and implement them themselves instead of getting them "for free" during upgrades.

Scenarios

  1. Deploy cluster(s) into service project(s) on network(s) shared from a host project.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story:

As a user, I want to be able to:

  • skip creating service accounts in Terraform when using passthrough credentialsMode.
  • pass the installer service account to Terraform to be used as the service account for instances when using passthrough credentialsMode.

so that I can achieve

  • creating an IPI cluster using Shared VPC networks using a pre-created service account with the necessary permissions in the Host Project.

Acceptance Criteria:

Description of criteria:

  • Upstream documentation
  • Point 1
  • Point 2
  • Point 3

(optional) Out of Scope:

Detail about what is specifically not being delivered in the story

Engineering Details:

1. Proposed title of this feature request
Basic authentication for Helm Chart repository in helmchartrepositories.helm.openshift.io CRD.

2. What is the nature and description of the request?
As of v4.6.9, the HelmChartRepository CRD only supports client TLS authentication through spec.connectionConfig.tlsClientConfig.

3. Why do you need this? (List the business requirements here)
Basic authentication is widely used by many chart repositories managers (Nexus OSS, Artifactory, etc.)
Helm CLI also supports them with the helm repo add command.
https://helm.sh/docs/helm/helm_repo_add/

4. How would you like to achieve this? (List the functional requirements here)
Probably by extending the CRD:

spec:
connectionConfig:
username: username
password:
secretName: secret-name

The secret namespace should be openshift-config to align with the tlsClientConfig behavior.

5. For each functional requirement listed in question 4, specify how Red Hat and the customer can test to confirm the requirement is successfully implemented.
Trying to pull helm charts from remote private chart repositories that has disabled anonymous access and offers basic authentication.
E.g.: https://github.com/sonatype/docker-nexus

Owner: Architect:

Story (Required)

As an OCP user I will like to be able to install helm charts from repos added to ODC with basic authentication fields populated

Background (Required)

We need to support helm installs for Repos that have the basic authentication secret name and namespace.

Glossary

Out of scope

Updating the ProjectHelmChartRepository CRD, already done in diff story
Supporting the HelmChartRepository CR, this feature will be scoped first to project/namespace scope repos.

In Scope

<Defines what is included in this story>

Approach(Required)

If the new fields for basic auth are set in the repo CR then use those credentials when making API calls to helm to install/upgrade charts. We will error out if user logged in does not have access to the secret referenced by Repo CR. If basic auth fields are not present we assume is not an authenticated repo.

Dependencies

Nonet

Edge Case

NA

Acceptance Criteria

I can list, install and update charts on authenticated repos from ODC
Needs Documentation both upstream and downstream
Needs new unit test covering repo auth

INVEST Checklist

Dependencies identified
Blockers noted and expected delivery timelines set
Design is implementable
Acceptance criteria agreed upon
Story estimated

Legend

Unknown
Verified
Unsatisfied

Epic Goal

  • Support manifest lists by image streams and the integrated registry. Clients should be able to pull/push manifests lists from/into the integrated registry. They also should be able to import images via `oc import-image` and them pull them from the internal registry.

Why is this important?

  • Manifest lists are becoming more and more popular. Customers want to mirror manifest lists into the registry and be able to pull them by digest.

Scenarios

  1. Manifest lists can be pushed into the integrated registry
  2. Imported manifests list can be pulled from the integrated registry
  3. Image triggers work with manifest lists

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • Existing functionality shouldn't change its behavior

Dependencies (internal and external)

  1. ...

Previous Work (Optional)

  1. https://github.com/openshift/enhancements/blob/master/enhancements/manifestlist/manifestlist-support.md

Open questions

  1. Can we merge creation of images without having the pruner?

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

ACCEPTANCE CRITERIA

  • The ImageStream object should contain a new flag indicating that it refers to a manifest list
  • openshift-controller-manager uses new openshift/api code to import image streams
  • changing `importMode` of an image stream tag triggers a new import (i.e. updates generation in the tag spec)

NOTES

This is a follow up Epic to https://issues.redhat.com/browse/MCO-144, which aimed to get in-place upgrades for Hypershift. This epic aims to capture additional work to focus on using CoreOS/OCP layering into Hypershift, which has benefits such as:

 

 - removing or reducing the need for ignition

 - maintaining feature parity between self-driving and managed OCP models

 - adding additional functionality such as hotfixes

Currently not implemented, and will require the MCD hypershift mode to be adjusted to handle disruptionless upgrades like regular MCD

Right now in https://github.com/openshift/hypershift/pull/1258 you can only perform one upgrade at a time. Multiple upgrades will break due to controller logic

 

Properly create logic to handle manifest creation/updates and deletion, so the logic is more bulletproof

We plan to build Ironic Container Images using RHEL9 as base image in OCP 4.12

This is required because the ironic components have abandoned support for CentOS Stream 8 and Python 3.6/3.7 upstream during the most recent development cycle that will produce the stable Zed release, in favor of CentOS Stream 9 and Python 3.8/3.9

More info on RHEL8 to RHEL9 transition in OCP can be found at https://docs.google.com/document/d/1N8KyDY7KmgUYA9EOtDDQolebz0qi3nhT20IOn4D-xS4

Epic Goal

  • We need the installer to accept a LB type from user and then we could set type of LB in the following object.
    oc get ingress.config.openshift.io/cluster -o yaml
    Then we can fetch info from this object and reconcile the operator to have the NLB changes reflected.

 

This is an API change and we will consider this as a feature request.

Why is this important?

https://issues.redhat.com/browse/NE-799 Please check this for more details

 

Scenarios

https://issues.redhat.com/browse/NE-799 Please check this for more details

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. installer
  2. ingress operator

Previous Work (Optional):

 No

Open questions::

N/A

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

We need tests for the ovirt-csi-driver and the cluster-api-provider-ovirt. These tests help us to

  • minimize bugs,
  • reproduce and fix them faster and
  • pin down current behavior of the driver

Also, having dedicated tests on lower levels with a smaller scope (unit, integration, ...) has the following benefits:

  • fast feedback cycle (local test execution)
  • developer in-code documentation
  • easier onboarding for new contributers
  • lower resource consumption
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

Description

As a user, I would like to be informed in an intuitive way,  when quotas have been reached in a namespace

Acceptance Criteria

  1. Show an alert banner on the Topology and add page for this project/namespace when there is a RQ (Resource Quota) / ACRQ (Applied Cluster Resource Quota) issue
    PF guideline: https://www.patternfly.org/v4/components/alert/design-guidelines#using-alerts 
  2. The above alert should have a CTA link to the search page with all RQ, ACRQ and if there is just one show the details page for the same
  3. For RQ, ACRQ list view show one more column called status with details as shown in the project view.

Additional Details:

 

Refer below for more details 

Description

As a user, In the topology view, I would like to be updated intuitively if any of the deployments have reached quota limits

Acceptance Criteria

  1. Show a yellow border around deployments if any of the deployments have reached the quota limit
  2. For deployments, if there are any errors associated with resource limits or quotas, include a warning alert in the side panel.
    1. If we know resource limits are the cause, include link to Edit resource limits
    2. If we know pod count is the cause, include a link to Edit pod count

Additional Details:

 

Refer below for more details 

Goal

Provide a form driven experience to allow cluster admins to manage the perspectives to meet the ACs below.

Problem:

We have heard the following requests from customers and developer advocates:

  • Some admins do not want to provide access to the Developer Perspective from the console
  • Some admins do not want to provide non-priv users access to the Admin Perspective from the console

Acceptance criteria:

  1. Cluster administrator is able to "hide" the admin perspective for non-priv users
  2. Cluster administrator is able to "hide" the developer perspective for all users
  3. Be user that User Preferences for individual users behaves appropriately. If only one perspective is available, the perspective switcher is not needed.

Dependencies (External/Internal):

Design Artifacts:

Exploration:

Note:

Description

As an admin, I want to be able to use a form driven experience  to hide user perspective(s)

Acceptance Criteria

  1. Add checkboxes with the options
    1. Hide "Administrator" perspective for non-privileged users
    2.  Hide "Developer" perspective for all users
  2. The console configuration CR should be updated as per the selected option

Additional Details:

Description

As an admin, I want to hide user perspective(s) based on the customization.

Acceptance Criteria

  1. Hide perspective(s) based on the customization
    1. When the admin perspective is disabled -> we hide the admin perspective for all unprivileged users
    2. When the dev perspective is disabled -> we hide the dev perspective for all users
  2. When all the perspectives are hidden from a user or for all users, show the Admin perspective by default

Additional Details:

Description

As an admin, I should be able to see a code snippet that shows how to add user perspectives

Based on the https://issues.redhat.com/browse/ODC-6732 enhancement proposal, the cluster admin can add user perspectives

To support the cluster-admin to configure the perspectives correctly, the developer console should provide a code snippet for the customization of yaml resource (Console CRD).

Customize Perspective Enhancement PR: https://github.com/openshift/enhancements/pull/1205

Acceptance Criteria

  1. When the admin opens the Console CRD there is a snippet in the sidebar which provides a default YAML which supports the admin to add user perspectives

Additional Details:

Previous work:

  1. https://issues.redhat.com/browse/ODC-5080
  2. https://issues.redhat.com/browse/ODC-5449

Description

As an admin, I want to hide the admin perspective for non-privileged users or hide the developer perspective for all users

Based on the https://issues.redhat.com/browse/ODC-6730 enhancement proposal, it is required to extend the console configuration CRD to enable the cluster admins to configure this data in the console resource

Acceptance Criteria

  1. Extend the "customization" spec type definition for the CRD in the openshift/api project

Additional Details:

Previous customization work:

  1. https://issues.redhat.com/browse/ODC-5416
  2. https://issues.redhat.com/browse/ODC-5020
  3. https://issues.redhat.com/browse/ODC-5447

Problem:

Customers don't want their users to have access to some/all of the items which are available in the Developer Catalog.  The request is to change access for the cluster, not per user or persona.

Goal:

Provide a form driven experience to allow cluster admins easily disable the Developer Catalog, or one or more of the sub catalogs in the Developer Catalog.

Why is it important?

Multiple customer requests.

Acceptance criteria:

  1. As a cluster admin, I can hide/disable access to the developer catalog for all users across all namespaces.
  2. As a cluster admin, I can hide/disable access to a specific sub-catalog in the developer catalog for all users across all namespaces.
    1. Builder Images
    2. Templates
    3. Helm Charts
    4. Devfiles
    5. Operator Backed

Notes

We need to consider how this will work with subcatalogs which are installed by operators: VMs, Event Sources, Event Catalogs, Managed Services, Cloud based services

Dependencies (External/Internal):

Design Artifacts:

Exploration:

Note:

Description

As an admin, I want to hide sub-catalogs in the developer catalog or hide the developer catalog completely based on the customization.

Acceptance Criteria

  1. Hide all links to the sub-catalog(s) from the add page, topology actions, empty states, quick search, and the catalog itself
  2. The sub-catalog should show Not found if the user opens the sub-catalog directly
  3. The feature should not be hidden if a sub-catalog option is disabled

Additional Details:

Description

As an admin, I want to hide/disable access to specific sub-catalogs in the developer catalog or the complete dev catalog for all users across all namespaces.

Based on the https://issues.redhat.com/browse/ODC-6732 enhancement proposal, it is required to extend the console configuration CRD to enable the cluster admins to configure this data in the console resource

Acceptance Criteria

Extend the "customization" spec type definition for the CRD in the openshift/api project

Additional Details:

Previous customization work:

  1. https://issues.redhat.com/browse/ODC-5416
  2. https://issues.redhat.com/browse/ODC-5020
  3. https://issues.redhat.com/browse/ODC-5447

Description

As a cluster-admin, I should be able to see a code snippet that shows how to enable sub-catalogs or the entire dev catalog.

Based on the https://issues.redhat.com/browse/ODC-6732 enhancement proposal, the cluster admin can add sub-catalog(s)  from the Developer Catalog or the Dev catalog as a whole.

To support the cluster-admin to configure the sub-catalog list correctly, the developer console should provide a code snippet for the customization yaml resource (Console CRD).

Acceptance Criteria

  1. When the admin opens the Console CRD there is a snippet in the sidebar which provides a default YAML, which supports the admin to add sub-catalogs/the whole dev catalog

Additional Details:

Previous work:

  1. https://issues.redhat.com/browse/ODC-5080
  2. https://issues.redhat.com/browse/ODC-5449

Epic Goal

  • Facilitate the transition to for OLM and content to PSA enforcing the `restricted` security profile
  • Use the label synch'er to enforce the required security profile
  • Current content should work out-of-the-box as is
  • Upgrades should not be blocked

Why is this important?

  • PSA helps secure the cluster by enforcing certain security restrictions that the pod must meet to be scheduled
  • 4.12 will enforce the `restricted` profile, which will affect the deployment of operators in `openshift-*` namespaces 

Scenarios

  1. Admin installs operator in an `openshift-*`namespace that is not managed by the label syncher -> label should be applied
  2. Admin installs operator in an `openshift-*` namespace that has a label asking the label syncher to not reconcile it -> nothing changes

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • Done only downstream
  • Transition documentation written and reviewed

Dependencies (internal and external)

  1. label syncher (still searching for the link)

Open questions::

  1. Is this only for openshift-* namespaces?

Resources

Stakeholders

  • Daniel S...?

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

As an admin, I would like openshift-* namespaces with an operator to be labeled with security.openshift.io/scc.podSecurityLabelSync=true to ensure the continual functioning of operators without manual intervention. The label should only be applied to openshift-* namespaces with an operator (the presence of a ClusterServiceVersion resource) IF the label is not already present. This automation will help smooth functioning of the cluster and avoid frivolous operational events.

Context: As part of the PSA migration period, Openshift will ship with the "label sync'er" - a controller that will automatically adjust PSA security profiles in response to the workloads present in the namespace. We can assume that not all operators (produced by Red Hat, the community or ISVs) will have successfully migrated their deployments in response to upstream PSA changes. The label sync'er will sync, by default, any namespace not prefixed with "openshift-", of which an explicit label (security.openshift.io/scc.podSecurityLabelSync=true) is required for sync.

A/C:
 - OLM operator has been modified (downstream only) to label any unlabelled "openshift-" namespace in which a CSV has been created
 - If a labeled namespace containing at least one non-copied csv becomes unlabelled, it should be relabelled 
 - The implementation should be done in a way to eliminate or minimize subsequent downstream sync work (it is ok to make slight architectural changes to the OLM operator in the upstream to enable this)

This epic tracks network tooling improvements for 4.12

New framework and process should be developed to make sharing network tools with devs, support and customers convenient. We are going to add some tools for ovn troubleshooting before ovn-k goes default, also some tools that we got from customer cases, and some more to help analyze and debug collected logs based on stable must-gather/sosreport format we get now thanks to 4.11 Epic.

Our estimation for this Epic is 1 engineer * 2 Sprints

WHY:
This epic is important to help improve the time it takes our customers and our team to understand an issue within the cluster.
A focus of this epic is to develop tools to quickly allow debugging of a problematic cluster. This is crucial for the engineering team to help us scale. We want to provide a tool to our customers to help lower the cognitive burden to get at a root cause of an issue.

 

Alert if any of the ovn controllers disconnected for a period of time from the southbound database using metric ovn_controller_southbound_database_connected.

The metric updates every 2 minutes so please be mindful of this when creating the alert.

If the controller is disconnected for 10 minutes, fire an alert.

DoD: Merged to CNO and tested by QE

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Come up with a consistent way to detect node down on OCP and hypershift. Current mechanism for OCP (probe port 9) does not work for hypershift, meaning, hypershift node down detection will be longer (~40 secs). We should aim to have a common mechanism for both. As well, we should consider alternatives to the probing port 9. Perhaps BFD, or other detection.
  • Get clarification on node down detection times. Some customers have (apparently) asked for detection on the order of 100ms, recommendation is to use multiple Egress IPs, so this may not be a hard requirement. Need clarification from PM/Customers.

Why is this important?

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Add sock proxy to cluster-network-operator so egressip can use grpc to reach worker nodes.
 
With the introduction of grpc as means for determining the state of a given egress node, hypershift should
be able to leverage socks proxy and become able to know the state of each egress node.
 
References relevant to this work:
1281-network-proxy
[+https://coreos.slack.com/archives/C01C8502FMM/p1658427627751939+]
[+https://github.com/openshift/hypershift/pull/1131/commits/28546dc587dc028dc8bded715847346ff99d65ea+]

This Epic is here to track the rebase we need to do when kube 1.25 is GA https://www.kubernetes.dev/resources/release/

Keeping this in mind can help us plan our time better. ATTOW GA is planned for August 23

https://docs.google.com/document/d/1h1XsEt1Iug-W9JRheQas7YRsUJ_NQ8ghEMVmOZ4X-0s/edit --> this is the link for rebase help

Incomplete Epics

This section includes Jira cards that are linked to an Epic, but the Epic itself is not linked to any Feature. These epics were not completed when this image was assembled

Changes made in METAL-1 open up opportunities to improve our handling of images by cleaning up redundant code that generates extra work for the user and extra load for the cluster.

We only need to run the image cache DaemonSet if there is a QCOW URL to be mirrored (effectively this means a cluster installed with 4.9 or earlier). We can stop deploying it for new clusters installed with 4.10 or later.

Currently, the image-customization-controller relies on the image cache running on every master to provide the shared hostpath volume containing the ISO and initramfs. The first step is to replace this with a regular volume and an init container in the i-c-c pod that extracts the images from machine-os-images. We can use the copy-metal -image-build flag (instead of -all used in the shared volume) to provide only the required images.

Once i-c-c has its own volume, we can switch the image extraction in the metal3 Pod's init container to use the -pxe flag instead of -all.

The machine-os-images init container for the image cache (not the metal3 Pod) can be removed. The whole image cache deployment is now optional and need only be started if provisioningOSDownloadURL is set (and in fact should be deleted if it is not).

Epic Goal

  • To improve the reliability of disk cleaning before installation and to provide the user with sufficient warning regarding the consequences of the cleaning

Why is this important?

  • Insufficient cleaning can lead to installation failure
  • Insufficient warning can lead to complaints of unexpected data loss

Scenarios

  1.  

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Description of the problem:
When running assisted-installer on a machine where is more than one volume group per physical volume. Only the first volume group will be cleaned up. This leads to problems later and will lead to errors such as

Failed - failed executing nsenter [--target 1 --cgroup --mount --ipc --pid -- pvremove /dev/sda -y -ff], Error exit status 5, LastOutput "Can't open /dev/sda exclusively. Mounted filesystem? 

How reproducible:

Set up a VM with more than one volume group per physical volume. As an example, look at the following sample from a customer cluster.

List block devices
/usr/bin/lsblk -o NAME,MAJ:MIN,SIZE,TYPE,FSTYPE,KNAME,MODEL,UUID,WWN,HCTL,VENDOR,STATE,TRAN,PKNAME
NAME              MAJ:MIN   SIZE TYPE FSTYPE      KNAME MODEL            UUID                                   WWN                HCTL       VENDOR   STATE   TRAN PKNAME
loop0               7:0   125.9G loop xfs         loop0                  c080b47b-2291-495c-8cc0-2009ebc39839                                                       
loop1               7:1   885.5M loop squashfs    loop1                                                                                                             
sda                 8:0   894.3G disk             sda   INTEL SSDSC2KG96                                        0x55cd2e415235b2db 1:0:0:0    ATA      running sas  
|-sda1              8:1     250M part             sda1                                                          0x55cd2e415235b2db                                  sda
|-sda2              8:2     750M part ext2        sda2                   3aa73c72-e342-4a07-908c-a8a49767469d   0x55cd2e415235b2db                                  sda
|-sda3              8:3      49G part xfs         sda3                   ffc3ccfe-f150-4361-8ae5-f87b17c13ac2   0x55cd2e415235b2db                                  sda
|-sda4              8:4   394.2G part LVM2_member sda4                   Ua3HOc-Olm4-1rma-q0Ug-PtzI-ZOWg-RJ63uY 0x55cd2e415235b2db                                  sda
`-sda5              8:5     450G part LVM2_member sda5                   W8JqrD-ZvaC-uNK9-Y03D-uarc-Tl4O-wkDdhS 0x55cd2e415235b2db                                  sda
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sda5
sdb                 8:16  894.3G disk             sdb   INTEL SSDSC2KG96                                        0x55cd2e415235b31b 1:0:1:0    ATA      running sas  
`-sdb1              8:17  894.3G part LVM2_member sdb1                   6ETObl-EzTd-jLGw-zVNc-lJ5O-QxgH-5wLAqD 0x55cd2e415235b31b                                  sdb
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sdb1
sdc                 8:32  894.3G disk             sdc   INTEL SSDSC2KG96                                        0x55cd2e415235b652 1:0:2:0    ATA      running sas  
`-sdc1              8:33  894.3G part LVM2_member sdc1                   pBuktx-XlCg-6Mxs-lddC-qogB-ahXa-Nd9y2p 0x55cd2e415235b652                                  sdc
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sdc1
sdd                 8:48  894.3G disk             sdd   INTEL SSDSC2KG96                                        0x55cd2e41521679b7 1:0:3:0    ATA      running sas  
`-sdd1              8:49  894.3G part LVM2_member sdd1                   exVSwU-Pe07-XJ6r-Sfxe-CQcK-tu28-Hxdnqo 0x55cd2e41521679b7                                  sdd
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sdd1
sr0                11:0     989M rom  iso9660     sr0   Virtual CDROM0   2022-06-17-18-18-33-00                                    0:0:0:0    AMI      running usb  

Now run the assisted installer and try to install an SNO node on this machine, you will find that the installation will fail with a message that indicates that it could not exclusively access /dev/sda

Actual results:

 The installation will fail with a message that indicates that it could not exclusively access /dev/sda

Expected results:

The installation should proceed and the cluster should start to install.

Suspected Cases
https://issues.redhat.com/browse/AITRIAGE-3809
https://issues.redhat.com/browse/AITRIAGE-3802
https://issues.redhat.com/browse/AITRIAGE-3810

Description of the problem:

Cluster Installation fail if installation disk has lvm on raid:

Host: test-infra-cluster-3cc862c9-master-0, reached installation stage Failed: failed executing nsenter [--target 1 --cgroup --mount --ipc --pid -- mdadm --stop /dev/md0], Error exit status 1, LastOutput "mdadm: Cannot get exclusive access to /dev/md0:Perhaps a running process, mounted filesystem or active volume group?" 

How reproducible:

100%

Steps to reproduce:

1. Install a cluster while master nodes has disk with LVM on RAID (reproduces using test: https://gitlab.cee.redhat.com/ocp-edge-qe/kni-assisted-installer-auto/-/blob/master/api_tests/test_disk_cleanup.py#L97)

Actual results:

Installation failed

Expected results:

Installation success

Epic Goal

  • Increase success-rate of of our CI jobs
  • Improve debugability / visibility or tests 

Why is this important?

  • Failed presubmit jobs (required or optional) can make an already tested+approved PR to not get in
  • Failed periodic jobs interfere our visibility around stability of features

Description of problem:

check_pkt_length cannot be offloaded without
1) sFlow offload patches in Openvswitch
2) Hardware driver support.

Since 1) will not be done anytime soon. We need a work around for the check_pkt_length issue.

Version-Release number of selected component (if applicable):

4.11/4.12

How reproducible:

Always

Steps to Reproduce:

1. Any flow that has check_pkt_len()
  5-b: Pod -> NodePort Service traffic (Pod Backend - Different Node)
  6-b: Pod -> NodePort Service traffic (Host Backend - Different Node)
  4-b: Pod -> Cluster IP Service traffic (Host Backend - Different Node)
  10-b: Host Pod -> Cluster IP Service traffic (Host Backend - Different Node)
  11-b: Host Pod -> NodePort Service traffic (Pod Backend - Different Node)
  12-b: Host Pod -> NodePort Service traffic (Host Backend - Different Node)   

Actual results:

Poor performance due to upcalls when check_pkt_len() is not supported.

Expected results:

Good performance.

Additional info:

https://docs.google.com/spreadsheets/d/1LHY-Af-2kQHVwtW4aVdHnmwZLTiatiyf-ySffC8O5NM/edit#gid=670206692

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Run OpenShift builds that do not execute as the "root" user on the host node.

Why is this important?

  • OpenShift builds require an elevated set of capabilities to build a container image
  • Builds currently run as root to maintain adequate performance
  • Container workloads should run as non-root from the host's perspective. Containers running as root are a known security risk.
  • Builds currently run as root and require a privileged container. See BUILD-225 for removing the privileged container requirement.

Scenarios

  1. Run BuildConfigs in a multi-tenant environment
  2. Run BuildConfigs in a heightened security environment/deployment

Acceptance Criteria

  • Developers can opt into running builds in a cri-o user namespace by providing an environment variable with a specific value.
  • When the correct environment variable is provided, builds run in a cri-o user namespace, and the build pod does not require the "privileged: true" security context.
  • User namespace builds can pass basic test scenarios for the Docker and Source strategy build.
  • Steps to run unprivileged builds are documented.

Dependencies (internal and external)

  1. Buildah supports running inside a non-privileged container
  2. CRI-O allows workloads to opt into running containers in user namespaces.

Previous Work (Optional):

  1. BUILD-225 - remove privileged requirement for builds.

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story

As a developer building container images on OpenShift
I want to specify that my build should run without elevated privileges
So that builds do not run as root from the host's perspective with elevated privileges

Acceptance Criteria

  • Developers can provide an environment variable to indicate the build should not use privileged containers
  • When the correct env var + value is specified, builds run in a user namespace (non-root on the host)

QE Impact

No QE required for Dev Preview. OpenShift regression testing will verify that existing behavior is not impacted.

Docs Impact

We will need to document how to enable this feature, with sufficient warnings regarding Dev Preview.

PX Impact

This likely warrants an OpenShift blog post, potentially?

Notes

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • ...

Why is this important?

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

We have been running into a number of problems with configure-ovs and nodeip-configuration selecting different interfaces in OVNK deployments. This causes connectivity issues, so we need some way to ensure that everything uses the same interface/IP.

Currently configure-ovs runs before nodeip-configuration, but since nodeip-configuration is the source of truth for IP selection regardless of CNI plugin, I think we need to look at swapping that order. That way configure-ovs could look at what nodeip-configuration chose and not have to implement its own interface selection logic.

I'm targeting this at 4.12 because even though there's probably still time to get it in for 4.11, changing the order of boot services is always a little risky and I'd prefer to do it earlier in the cycle so we have time to tease out any issues that arise. We may need to consider backporting the change though since this has been an issue at least back to 4.10.

Goal
Provide an indication that advanced features are used

Problem

Today, customers and RH don't have the information on the actual usage of advanced features.

Why is this important?

  1. Better focus upsell efforts
  2. Compliance information for customers that are not aware they are not using the right subscription

 

Prioritized Scenarios

In Scope
1. Add a boolean variable in our telemetry to mark if the customer is using advanced features (PV encryption, encryption with KMS, external mode). 

Not in Scope

Integrate with subscription watch - will be done by the subscription watch team with our help.

Customers

All

Customer Facing Story
As a compliance manager, I should be able to easily see if all my clusters are using the right amount of subscriptions

What does success look like?

A clear indication in subscription watch for ODF usage (either essential or advanced). 

1. Proposed title of this feature request

  • Request to add a bool variable into telemetry which indicates the usage of any of the advanced feature, like PV encryption or KMS encryption or external mode etc.

2. What is the nature and description of the request?

  • Today, customers and RH don't have the information on the actual usage of advanced features. This feature will help RH to have a better indication on the statistics of customers using the advanced features and focus better on upsell efforts.

3. Why does the customer need this? (List the business requirements here)

  • As a compliance manager, I should be able to easily see if all my clusters are using the right amount of subscriptions.

4. List any affected packages or components.

  • Telemetry

_____________________

Link to main epic: https://issues.redhat.com/browse/RHSTOR-3173

 

Other Complete

This section includes Jira cards that are not linked to either an Epic or a Feature. These tickets were completed when this image was assembled

This is a clone of issue OCPBUGS-3027. The following is the description of the original issue:

Description of problem:

When running the console in development mode per https://github.com/openshift/console#frontend-development, metrics do not load on the cluster overview, pods list page, pod details page (Metrics tab is missing), etc.

Samuel Padgett suspects the changes in https://github.com/openshift/console/commit/0bd839da219462ea585183de1c856fb60e9f96fb are related.

Description of problem:

When the Insights operator is marked as disabled then the "Available" operator condition is updated every 2 mins. This is not desired and gives an impression that the operator is restarted every 2 mins 

Version-Release number of selected component (if applicable):

 

How reproducible:

No extra steps needed, just watch "oc get co insights --watch"

Steps to Reproduce:

1.
2.
3.

Actual results:

available condition transition time updated every 2 min

Expected results:

available condition is updated only when its status changed

Additional info:

 

This is a clone of issue OCPBUGS-5505. The following is the description of the original issue:

Description of problem:

The upgradeability check in CVO is throttled (essentially cached) for a nondeterministic period of time, same as the minimal sync period computed at runtime. The period can be up to 4 minutes, determined at CVO start time as 2minutes * (0..1 + 1). We agreed with Trevor that such throttling is unnecessarily aggressive (the check is not that expensive). It also causes CI flakes, because the matching test only has 3 minutes timeout. Additionally, the non-determinism and longer throttling results makes UX worse by actions done in the cluster may have their observable effect delayed.

Version-Release number of selected component (if applicable):

discovered in 4.10 -> 4.11 upgrade jobs

How reproducible:

The test seems to flake ~10% of 4.10->4.11 Azure jobs (sippy). There does not seem to be that much impact on non-Azure jobs though which is a bit weird.

Steps to Reproduce:

Inspect the CVO log and E2E logs from failing jobs with the provided [^check-cvo.py] helper:

$ ./check-cvo.py cvo.log && echo PASS || echo FAIL

Preferably, inspect CVO logs of clusters that just underwent an upgrade (upgrades makes the original problematic behavior more likely to surface)

Actual results:

$ ./check-cvo.py openshift-cluster-version_cluster-version-operator-5b6966c474-g4kwk_cluster-version-operator.log && echo PASS || echo FAIL
FAIL: Cache hit at 11:59:55.332339 0:03:13.665006 after check at 11:56:41.667333
FAIL: Cache hit at 12:06:22.663215 0:03:13.664964 after check at 12:03:08.998251
FAIL: Cache hit at 12:12:49.997119 0:03:13.665598 after check at 12:09:36.331521
FAIL: Cache hit at 12:19:17.328510 0:03:13.664906 after check at 12:16:03.663604
FAIL: Cache hit at 12:25:44.662290 0:03:13.666759 after check at 12:22:30.995531
Upgradeability checks:           5
Upgradeability check cache hits: 12
FAIL

Note that the bug is probabilistic, so not all unfixed clusters will exhibit the behavior. My guess of the incidence rate is about 30-40%.

Expected result

$ ./check-cvo.py openshift-cluster-version_cluster-version-operator-7b8f85d455-mk9fs_cluster-version-operator.log && echo PASS || echo FAIL
Upgradeability checks:           12
Upgradeability check cache hits: 11
PASS

The actual numbers are not relevant (unless the upgradeabilily check count is zero, which means the test is not conclusive, the script warns about that), lack of failure is.

Additional info:

$ curl --silent https://gcsweb-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/origin-ci-test/logs/periodic-ci-openshift-release-master-ci-4.11-upgrade-from-stable-4.10-e2e-azure-upgrade/1607602927633960960/artifacts/e2e-azure-upgrade/gather-extra/artifacts/pods/openshift-cluster-version_cluster-version-operator-7b7d4b5bbd-zjqdt_cluster-version-operator.log | grep upgradeable.go
...
I1227 06:50:59.023190       1 upgradeable.go:122] Cluster current version=4.10.46
I1227 06:50:59.042735       1 upgradeable.go:42] Upgradeable conditions were recently checked, will try later.
I1227 06:51:14.024345       1 upgradeable.go:42] Upgradeable conditions were recently checked, will try later.
I1227 06:53:23.080768       1 upgradeable.go:42] Upgradeable conditions were recently checked, will try later.
I1227 06:56:59.366010       1 upgradeable.go:122] Cluster current version=4.11.0-0.ci-2022-12-26-193640

$ curl --silent https://gcsweb-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/origin-ci-test/logs/periodic-ci-openshift-release-master-ci-4.11-upgrade-from-stable-4.10-e2e-azure-upgrade/1607602927633960960/artifacts/e2e-azure-upgrade/openshift-e2e-test/artifacts/e2e.log | grep 'Kubernetes 1.25 and therefore OpenShift 4.12'
Dec 27 06:51:15.319: INFO: Waiting for Upgradeable to be AdminAckRequired for "Kubernetes 1.25 and therefore OpenShift 4.12 remove several APIs which require admin consideration. Please see the knowledge article https://access.redhat.com/articles/6955381 for details and instructions." ...
Dec 27 06:54:15.413: FAIL: Error while waiting for Upgradeable to complain about AdminAckRequired with message "Kubernetes 1.25 and therefore OpenShift 4.12 remove several APIs which require admin consideration. Please see the knowledge article https://access.redhat.com/articles/6955381 for details and instructions.": timed out waiting for the condition
The test passes. Also, the "Upgradeable conditions were recently checked, will try later." messages in CVO logs should never occur after a deterministic, short amount of time (I propose 1 minute) after upgradeability was checked.

I tested the throttling period in https://github.com/openshift/cluster-version-operator/pull/880. With the period of 15m, the test passrate was 4 of 9. Wiht the period of 1m, the test did not fail at all.

Some context in Slack thread

Description of problem:

Create network LoadBalancer service, but always get Connection time out when accessing the LB

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-10-27-135134

How reproducible:

100%

Steps to Reproduce:

1. create custom ingresscontroller that using Network LB service

$ Domain="nlb.$(oc get dns.config cluster -o=jsonpath='{.spec.baseDomain}')"
$ oc create -f - << EOF
kind: IngressController
apiVersion: operator.openshift.io/v1
metadata:
  name: nlb
  namespace: openshift-ingress-operator
spec:
  domain: ${Domain}
  replicas: 3
  endpointPublishingStrategy:
    loadBalancer:
      providerParameters:
        aws:
          type: NLB
        type: AWS
      scope: External
    type: LoadBalancerService
EOF


2. wait for the ingress NLB service is ready.

$ oc -n openshift-ingress get svc/router-nlb
NAME         TYPE           CLUSTER-IP      EXTERNAL-IP                                                                     PORT(S)                      AGE
router-nlb   LoadBalancer   172.30.75.134   a765a5eb408aa4a68988e35b72672379-78a76c339ded64fa.elb.us-east-2.amazonaws.com   80:31833/TCP,443:32499/TCP   117s


3. curl the network LB

$ curl a765a5eb408aa4a68988e35b72672379-78a76c339ded64fa.elb.us-east-2.amazonaws.com -I
<hang>

Actual results:

Connection time out

Expected results:

curl should return 503

Additional info:

the NLB service has the annotation:
  service.beta.kubernetes.io/aws-load-balancer-type: nlb

 

Description of problem:

https://github.com/openshift/api/pull/1186 - https://issues.redhat.com/browse/CONSOLE-3069 promoted ConsolePlugin CRD to v1.

The PR introduces also a conversion webhook from v1alpha1 to v1.

In new CRD version I18n ConsolePluginI18n is marked as optional.
The conversion webhook will not set a default valid ("Lazy"/"Preload") value writing the v1 object and a v1 object completely omitting spec.i18n will be accepted we no valid default value as well.

On the other side, at garbage collection time the object will be stuck forever due to the lack of a valid value for spec.i18n.loadType

Example,
create a v1 ConsolePlugin object:

cat <<EOF | oc apply -f -
apiVersion: console.openshift.io/v1
kind: ConsolePlugin
metadata:
  name: test472
spec:
  backend:
    service:
      basePath: /
      name: test472-service
      namespace: kubevirt-hyperconverged
      port: 9443
    type: Service
  displayName: Test 472 Plugin
EOF

Delete it in foreground mode:
stirabos@t14s:~$ oc delete consoleplugin test472 --timeout=30s --cascade='foreground' -v 7
I1011 18:20:03.255605   31610 loader.go:372] Config loaded from file:  /home/stirabos/.kube/config
I1011 18:20:03.266567   31610 round_trippers.go:463] DELETE https://api.ci-ln-krdzphb-72292.gcp-2.ci.openshift.org:6443/apis/console.openshift.io/v1/consoleplugins/test472
I1011 18:20:03.266581   31610 round_trippers.go:469] Request Headers:
I1011 18:20:03.266588   31610 round_trippers.go:473]     Accept: application/json
I1011 18:20:03.266594   31610 round_trippers.go:473]     Content-Type: application/json
I1011 18:20:03.266600   31610 round_trippers.go:473]     User-Agent: oc/4.11.0 (linux/amd64) kubernetes/fcf512e
I1011 18:20:03.266606   31610 round_trippers.go:473]     Authorization: Bearer <masked>
I1011 18:20:03.688569   31610 round_trippers.go:574] Response Status: 200 OK in 421 milliseconds
consoleplugin.console.openshift.io "test472" deleted
I1011 18:20:03.688911   31610 round_trippers.go:463] GET https://api.ci-ln-krdzphb-72292.gcp-2.ci.openshift.org:6443/apis/console.openshift.io/v1/consoleplugins?fieldSelector=metadata.name%3Dtest472
I1011 18:20:03.688919   31610 round_trippers.go:469] Request Headers:
I1011 18:20:03.688928   31610 round_trippers.go:473]     Authorization: Bearer <masked>
I1011 18:20:03.688935   31610 round_trippers.go:473]     Accept: application/json
I1011 18:20:03.688941   31610 round_trippers.go:473]     User-Agent: oc/4.11.0 (linux/amd64) kubernetes/fcf512e
I1011 18:20:03.840103   31610 round_trippers.go:574] Response Status: 200 OK in 151 milliseconds
I1011 18:20:03.840825   31610 round_trippers.go:463] GET https://api.ci-ln-krdzphb-72292.gcp-2.ci.openshift.org:6443/apis/console.openshift.io/v1/consoleplugins?fieldSelector=metadata.name%3Dtest472&resourceVersion=175205&watch=true
I1011 18:20:03.840848   31610 round_trippers.go:469] Request Headers:
I1011 18:20:03.840884   31610 round_trippers.go:473]     Accept: application/json
I1011 18:20:03.840907   31610 round_trippers.go:473]     User-Agent: oc/4.11.0 (linux/amd64) kubernetes/fcf512e
I1011 18:20:03.840928   31610 round_trippers.go:473]     Authorization: Bearer <masked>
I1011 18:20:03.972219   31610 round_trippers.go:574] Response Status: 200 OK in 131 milliseconds
error: timed out waiting for the condition on consoleplugins/test472

and in kube-controller-manager logs we see:

2022-10-11T16:25:32.192864016Z I1011 16:25:32.192788       1 garbagecollector.go:501] "Processing object" object="test472" objectUID=0cc46a01-113b-4bbe-9c7a-829a97d6867c kind="ConsolePlugin" virtual=false
2022-10-11T16:25:32.282303274Z I1011 16:25:32.282161       1 garbagecollector.go:623] remove DeleteDependents finalizer for item [console.openshift.io/v1/ConsolePlugin, namespace: , name: test472, uid: 0cc46a01-113b-4bbe-9c7a-829a97d6867c]
2022-10-11T16:25:32.304835330Z E1011 16:25:32.304730       1 garbagecollector.go:379] error syncing item &garbagecollector.node{identity:garbagecollector.objectReference{OwnerReference:v1.OwnerReference{APIVersion:"console.openshift.io/v1", Kind:"ConsolePlugin", Name:"test472", UID:"0cc46a01-113b-4bbe-9c7a-829a97d6867c", Controller:(*bool)(nil), BlockOwnerDeletion:(*bool)(nil)}, Namespace:""}, dependentsLock:sync.RWMutex{w:sync.Mutex{state:0, sema:0x0}, writerSem:0x0, readerSem:0x0, readerCount:1, readerWait:0}, dependents:map[*garbagecollector.node]struct {}{}, deletingDependents:true, deletingDependentsLock:sync.RWMutex{w:sync.Mutex{state:0, sema:0x0}, writerSem:0x0, readerSem:0x0, readerCount:0, readerWait:0}, beingDeleted:true, beingDeletedLock:sync.RWMutex{w:sync.Mutex{state:0, sema:0x0}, writerSem:0x0, readerSem:0x0, readerCount:0, readerWait:0}, virtual:false, virtualLock:sync.RWMutex{w:sync.Mutex{state:0, sema:0x0}, writerSem:0x0, readerSem:0x0, readerCount:0, readerWait:0}, owners:[]v1.OwnerReference(nil)}: ConsolePlugin.console.openshift.io "test472" is invalid: spec.i18n.loadType: Unsupported value: "": supported values: "Preload", "Lazy"

Version-Release number of selected component (if applicable):

OCP 4.12.0 ec4

How reproducible:

100% 

Steps to Reproduce:

1. cat <<EOF | oc apply -f -
apiVersion: console.openshift.io/v1
kind: ConsolePlugin
metadata:
  name: test472
spec:
  backend:
    service:
      basePath: /
      name: test472-service
      namespace: kubevirt-hyperconverged
      port: 9443
    type: Service
  displayName: Test 472 Plugin
EOF
2. oc delete consoleplugin test472 --timeout=30s --cascade='foreground' -v 7

Actual results:

2022-10-11T16:25:32.192864016Z I1011 16:25:32.192788       1 garbagecollector.go:501] "Processing object" object="test472" objectUID=0cc46a01-113b-4bbe-9c7a-829a97d6867c kind="ConsolePlugin" virtual=false
2022-10-11T16:25:32.282303274Z I1011 16:25:32.282161       1 garbagecollector.go:623] remove DeleteDependents finalizer for item [console.openshift.io/v1/ConsolePlugin, namespace: , name: test472, uid: 0cc46a01-113b-4bbe-9c7a-829a97d6867c]
2022-10-11T16:25:32.304835330Z E1011 16:25:32.304730       1 garbagecollector.go:379] error syncing item &garbagecollector.node{identity:garbagecollector.objectReference{OwnerReference:v1.OwnerReference{APIVersion:"console.openshift.io/v1", Kind:"ConsolePlugin", Name:"test472", UID:"0cc46a01-113b-4bbe-9c7a-829a97d6867c", Controller:(*bool)(nil), BlockOwnerDeletion:(*bool)(nil)}, Namespace:""}, dependentsLock:sync.RWMutex{w:sync.Mutex{state:0, sema:0x0}, writerSem:0x0, readerSem:0x0, readerCount:1, readerWait:0}, dependents:map[*garbagecollector.node]struct {}{}, deletingDependents:true, deletingDependentsLock:sync.RWMutex{w:sync.Mutex{state:0, sema:0x0}, writerSem:0x0, readerSem:0x0, readerCount:0, readerWait:0}, beingDeleted:true, beingDeletedLock:sync.RWMutex{w:sync.Mutex{state:0, sema:0x0}, writerSem:0x0, readerSem:0x0, readerCount:0, readerWait:0}, virtual:false, virtualLock:sync.RWMutex{w:sync.Mutex{state:0, sema:0x0}, writerSem:0x0, readerSem:0x0, readerCount:0, readerWait:0}, owners:[]v1.OwnerReference(nil)}: ConsolePlugin.console.openshift.io "test472" is invalid: spec.i18n.loadType: Unsupported value: "": supported values: "Preload", "Lazy"

Expected results:

Object correctly deleted

Additional info:

The issue doesn't happen with --cascade='background' which is the default on the CLI client

Description of problem:

When the cluster install finished, wait-for install-complete command didn't exit as expected.

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1. Get the latest agent-installer and build image
git clone https://github.com/openshift/installer.git
cd installer/
hack/build.sh
Edit agent-config and install-config yaml file
Create the agent.iso image:
OPENSHIFT_INSTALL_RELEASE_IMAGE_OVERRIDE=quay.io/openshift-release-dev/ocp-release:4.12.0-ec.3-x86_64 bin/openshift-install agent create image --log-level debug

2. Install SNO cluster
virt-install --connect qemu:///system -n control-0 -r 33000 --vcpus 8 --cdrom ./agent.iso --disk pool=installer,size=120 --boot uefi,hd,cdrom --os-variant=rhel8.5 --network network=default,mac=52:54:00:aa:aa:aa --wait=-1 

3. Run 'bin/openshift agent wait-for bootstrap-complete --log-level debug' and the command finished as expected.

4. After 'bootstrap' completion, run 'bin/openshift agent wait-for install-complete --log-level debug', the command didn't finish as expected.

Actual results:

 

Expected results:

 

Additional info:

 

This is a clone of issue OCPBUGS-4656. The following is the description of the original issue:

Description of problem:

`/etc/hostname` may exist, but be empty. `vsphere-hostname` service should check that the file is not empty instead of just that it exists.

OKD's machine-os-content starting from F37 has an empty /etc/hostname file, which breaks joining workers in vsphere IPI

Version-Release number of selected component (if applicable):


How reproducible:

Always

Steps to Reproduce:

1. Install OKD w/ workers on vsphere
2.
3.

Actual results:


Workers get hostname resolved using NM

Expected results:


Workers get hostname resolved using vmtoolsd

Additional info:


We should deprecate and eventually remove react-helmet as a shared plugin dependency. This dependency is small, and plugins can bring their own version if needed.

This requires updated our webpack plugin to allow dependency fallbacks when a shared dependency is not present.

cc Vojtech Szocs 

 

AC:

  • Update docs in the GitHub pages to state that we are deprecating the react-helmet as a shared plugin dependency

The relevant code in ironic-image was not updated to support TLS, so it still uses the old port and explicit http://

This is a clone of issue OCPBUGS-5182. The following is the description of the original issue:

Description of problem:

Deploy IPI cluster on azure cloud, set region as westeurope, vm size as EC96iads_v5 or EC96ias_v5. Installation fails with below error:

12-15 11:47:03.429  level=error msg=Error: creating Linux Virtual Machine: (Name "jima-15a-m6fzd-bootstrap" / Resource Group "jima-15a-m6fzd-rg"): compute.VirtualMachinesClient#CreateOrUpdate: Failure sending request: StatusCode=400 -- Original Error: Code="BadRequest" Message="The VM size 'Standard_EC96iads_v5' is not supported for creation of VMs and Virtual Machine Scale Set with '<NULL>' security type."

Similar as https://bugzilla.redhat.com/show_bug.cgi?id=2055247.

From azure portal, we can see that the type of both vm size EC96iads_v5 and EC96ias_v5 are confidential compute.

Might also need to do similar process for them as what did in bug 2055247.

 

Version-Release number of selected component (if applicable):

4.12 nightly build

How reproducible:

Always

Steps to Reproduce:

1. Prepare install-config.yaml file, set region as westeurope, vm size as EC96iads_v5 or EC96ias_v5
2. Deploy IPI azure cluster
3.

Actual results:

Install failed with error in description

Expected results:

Installer should be exited during validation and show expected error message. 

Additional info:

 

 

This is a clone of issue OCPBUGS-2551. The following is the description of the original issue:

Description of problem:

When normal user select "All namespaces" by using the radio button "Show operands in", The ""Error Loading" error will be shown 

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-10-18-192348, 4.11

How reproducible:

Always

Steps to Reproduce:

1. Install operator "Red Hat Intergration-Camel K" on All namespace
2. Login console by using normal user
3. Navigate to "All instances" Tab for the opertor
4. Check the radio button "All namespaces" is being selected
5. Check the page 

Actual results:

The Error Loading info will be shown on page

Expected results:

The error should not shown

Additional info:

 

Description of problem: This is a follow-up to OCPBUGS-2795 and OCPBUGS-2941.

The installer fails to destroy the cluster when the OpenStack object storage omits 'content-type' from responses. This can happen on responses with HTTP status code 204, where a reverse proxy is truncating content-related headers (see this nginX bug report). In such cases, the Installer errors with:

level=error msg=Bulk deleting of container "5ifivltb-ac890-chr5h-image-registry-fnxlmmhiesrfvpuxlxqnkoxdbl" objects failed: Cannot extract names from response with content-type: []

Listing container object suffers from the same issue as listing the containers and this one isn't fixed in latest versions of gophercloud. I've reported https://github.com/gophercloud/gophercloud/issues/2509 and fixing it with https://github.com/gophercloud/gophercloud/issues/2510, however we likely won't be able to backport the bump to gophercloud master back to release-4.8 so we'll have to look for alternatives.

I'm setting the priority to critical as it's causing all our jobs to fail in master.

Version-Release number of selected component (if applicable):

4.8.z

How reproducible:

Likely not happening in customer environments where Swift is exposed directly. We're seeing the issue in our CI where we're using a non-RHOSP managed cloud.

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

Description of problem:
When the user selects Serverless as an import strategy and tried to import a Devfile, the import fails because of an invalid Deployment.

Could reproduce this already in 4.11, but its even more prominent in 4.12 when the console automatically selects the resource type serverless when the Serverless operator is installed.

Version-Release number of selected component (if applicable):
Works on 4.10
Failed on 4.11 and 4.12 master

How reproducible:
Always

Steps to Reproduce:
1. Install and setup Serverless operator
1. Switch to dev perspective, navigate to add > import from git
3. Enter a non-Devfile git URL like https://github.com/jerolimov/nodeinfo
4. On 4.11 select resource type Serverless (on 4.12 this should be selected automatically)
5. Update the git URL to a repo with a Devfile like https://github.com/nodeshift-starters/devfile-sample
6. Press create

Actual results:
Import fails with error:

Error "Invalid value: "": name part must be non-empty" for field "spec.template.labels".

Expected results:
Devfile should be imported

Additional info:

This is a clone of issue OCPBUGS-3084. The following is the description of the original issue:

Upstream Issue: https://github.com/kubernetes/kubernetes/issues/77603

Long log lines get corrupted when using '--timestamps' by the Kubelet.

The root cause is that the buffer reads up to a new line. If the line is greater than 4096 bytes and '--timestamps' is turrned on the kubelet will write the timestamp and the partial log line. We will need to refactor the ReadLogs function to allow for a partial line read.

https://github.com/kubernetes/kubernetes/blob/f892ab1bd7fd97f1fcc2e296e85fdb8e3e8fb82d/pkg/kubelet/kuberuntime/logs/logs.go#L325

apiVersion: v1
kind: Pod
metadata:
  name: logs
spec:
  restartPolicy: Never
  containers:
  - name: logs
    image: fedora
    args:
    - bash
    - -c
    - 'for i in `seq 1 10000000`; do echo -n $i; done'
kubectl logs logs --timestamps

Description of problem:

Customer is not able anymore to provision new baremetal nodes in 4.10.35 using the same rootDeviceHints used in 4.10.10.
Customer uses HP DL360 Gen10, with exteranal SAN storage that is seen by the system as a multipath device. Latest IPA versions are implementing some changes to avoid wiping shared disks and this seems to affect what we should provide as rootDeviceHints.
They used to put /dev/sda as rootDeviceHints, in 4.10.35 it doesn't make the IPA write the image to the disk anymore because it sees the disk as part of a multipath device, we tried using the on top multipath device /dev/dm-0, the system is then able to write the image to the disk but then it gets stuck when it tried to issue a partprobe command, rebooting the systems to boot from the disk does not seem to help complete the provisioning, no workaround so far.

 

Version-Release number of selected component (if applicable):

 

How reproducible:

by trying to provisioning a baremetal node with a multipath device.

Steps to Reproduce:

1. Create a new BMH using a multipath device as rootDeviceHints
2.
3.

Actual results:

The node does not get provisioned

Expected results:

the node gets provisioned correctly

Additional info:

 

Description of the problem:

I installed a cluster with OCS and CNV.

The issue is that cluster event contain repeated messages:

1/9/2022, 6:17:31 PM    Operator ocs status: available message: install strategy completed with no errors
1/9/2022, 6:17:30 PM    Operator lso status: available message: install strategy completed with no errors
1/9/2022, 6:17:30 PM    Operator cnv status: available message: install strategy completed with no errors
1/9/2022, 6:17:06 PM    Successfully completed installing cluster
1/9/2022, 6:17:06 PM    Updated status of the cluster to installed
1/9/2022, 6:17:01 PM    Operator ocs status: available message: install strategy completed with no errors
1/9/2022, 6:17:00 PM    Operator lso status: available message: install strategy completed with no errors
1/9/2022, 6:17:00 PM    Operator cnv status: available message: install strategy completed with no errors
1/9/2022, 6:16:31 PM    Operator ocs status: progressing message: installing: waiting for deployment ocs-operator to become ready: deployment "ocs-operator" not available: Deployment does not have minimum availability.
1/9/2022, 6:16:30 PM    Operator lso status: available message: install strategy completed with no errors
1/9/2022, 6:16:30 PM    Operator cnv status: available message: install strategy completed with no errors
1/9/2022, 6:16:01 PM    Operator ocs status: progressing message: installing: waiting for deployment ocs-operator to become ready: deployment "ocs-operator" not available: Deployment does not have minimum availability.
1/9/2022, 6:16:00 PM    Operator lso status: available message: install strategy completed with no errors
1/9/2022, 6:16:00 PM    Operator cnv status: available message: install strategy completed with no errors
1/9/2022, 6:15:31 PM    Operator ocs status: progressing message: installing: waiting for deployment ocs-operator to become ready: deployment "ocs-operator" not available: Deployment does not have minimum availability.
1/9/2022, 6:15:31 PM    Operator lso status: available message: install strategy completed with no errors
1/9/2022, 6:15:30 PM    Operator cnv status: available message: install strategy completed with no errors

 

How reproducible:

100%

Steps to reproduce:

1. Install cluster with OCS and CNV

2. Watch cluster events

Actual results:

repeated message when olm operator completed installation

Expected results:

1 event record for olm operator finished successfully 

This relates to the recovery of a cluster following an etcd outage.

The ingress path to kube-apiserver is:

───────────> VIP ─────────────────> Local HAProxy ────┬─> kube-apiserver-master-0
    (managed by keepalived)                           │
                                                      ├─> kube-apiserver-master-1
                                                      │
                                                      └─> kube-apiserver-master-2

Each master is running an HAProxy which load balances between the 3 kube-apiservers. Each HAProxy is running health checks against each kube-apiserver, and will add or remove it from the available pool based on its health.

We only use keepalived to ensure that HAProxy is not a single point of failure. It is the job of keepalived to ensure that incoming traffic is being directed to an HAProxy which is functioning correctly.

The current health check we are using for keepalived involves polling /readyz against the local HAProxy. While this seems intuitively correct it is in fact testing the wrong thing. It is testing whether the kube-apiserver it connects to is functioning correctly. However, this is not the purpose of keepalived. HAProxy runs health checks against kube-apiserver backends. keepalived simply selects a correctly functioning HAProxy.

This becomes important during recovery from an outage. When none of the kube-apiservers are healthy this health check will fail continuously, and the API VIP will move uselessly between masters. However the situation is much worse when only one of the kube-apiservers is up. In this case there is a high probability that it is overloaded and at least rate limiting incoming connections. This may lead us to fail the keepalived health check and fail the VIP over to the next HAProxy. This will cause all open kube-apiserver connections to reset, even the established ones. This increases the load on the kube-apiserver and increases the probability that the health check will fail again.

Ideally the keepalived health check would check only the health of HAProxy itself, not the health of the pool of kube-apiservers. In practise it will probably never be necessary to move the VIP while the master is up, regardless of the health of the cluster. A network partition affecting HAProxy would already be handled by VRRP between the masters, so it may be that it would be sufficient to check that the local HAProxy pod is healthy.

This is a clone of issue OCPBUGS-5165. The following is the description of the original issue:

Currently, the Dev Sandbox clusters sends the clusterType "OSD" instead of "DEVSANDBOX" because the configuration annotations of the console config are automatically overridden by some SyncSets.

Open Dev Sandbox and browser console and inspect window.SERVER_FLAGS.telemetry

This is a clone of issue OCPBUGS-2260. The following is the description of the original issue:

TRT-594 investigates failed CI upgrade runs due to alert KubePodNotReady firing.  The case was a pod getting skipped over for scheduling over two successive master node update / restarts.  The case was determined valid so the ask is to be able to have the monitoring aware that master nodes are restarting and scheduling may be delayed.   Presuming we don't want to change the existing tolerance for the non master node restart cases could we suppress it during those restarts and fall back to a second alert with increased tolerances only during those restarts, if we have metrics indicating we are restarting.  Or similar if there are better ways to handle.

The scenario is:

  • A master node (1) is out of service during upgrade
  • A pod (A) is created but can not be scheduled due to anti-affinity rules as the other nodes already host a pod of that definition
  • A second pod (B) from the same definition is created after the first
  • Pod (A) attempts scheduling but fails as the master (1) node is still updating
  • Master (1) node completes updating
  • Pod (B) attempts scheduling and succeeds
  • Next Master (2) node begins updating
  • Pod (A) can not be scheduled on the next attempt(s) as the active master nodes already have pods placed and the next master (2) node is unavailable
  • Master (2) node completes updating
  • Pod (A) is scheduled

This is a clone of issue OCPBUGS-5547. The following is the description of the original issue:

Description of problem:
This is a follow-up on https://bugzilla.redhat.com/show_bug.cgi?id=2083087 and https://github.com/openshift/console/pull/12390

When creating a Knative Service and delete it again with enabled option "Delete other resources created by console" (only available on 4.13+ with the PR above) the secret "$name-github-webhook-secret" is not deleted.

When the user tries to create the same Knative Service again this fails with an error:

An error occurred
secrets "nodeinfo-github-webhook-secret" already exists

Version-Release number of selected component (if applicable):
4.13

(we might want to backport this together with https://github.com/openshift/console/pull/12390 and OCPBUGS-5548)

How reproducible:
Always

Steps to Reproduce:

  1. Install OpenShift Serverless operator (tested with 1.26.0)
  2. Create a new project
  3. Navigate to Add > Import from git and create an application
  4. In the topology select the Knative Service > "Delete Service" (not Delete App)

Actual results:
Deleted resources:

  1. Knative Service (tries it twice!) $name
  2. ImageStream $name
  3. BuildConfig $name
  4. Secret $name-generic-webhook-secret

Expected results:
Should also remove this resource

  1. Delete Knative Service should be called just once
  2. Secret $name-github-webhook-secret

Additional info:
When delete the whole application all the resources are deleted correctly (and just once)!

  1. Knative Service (just once!) $name
  2. ImageStream $name
  3. BuildConfig $name
  4. Secret $name-generic-webhook-secret
  5. Secret $name-github-webhook-secret

This is a clone of issue OCPBUGS-1704. The following is the description of the original issue:

Description of problem:

According to OCP 4.11 doc (https://docs.openshift.com/container-platform/4.11/installing/installing_gcp/installing-gcp-account.html#installation-gcp-enabling-api-services_installing-gcp-account), the Service Usage API (serviceusage.googleapis.com) is an optional API service to be enabled. But, the installation cannot succeed if this API is disabled.

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-09-25-071630

How reproducible:

Always, if the Service Usage API is disabled in the GCP project.

Steps to Reproduce:

1. Make sure the Service Usage API (serviceusage.googleapis.com) is disabled in the GCP project.
2. Try IPI installation in the GCP project. 

Actual results:

The installation would fail finally, without any worker machines launched.

Expected results:

Installation should succeed, or the OCP doc should be updated.

Additional info:

Please see the attached must-gather logs (http://virt-openshift-05.lab.eng.nay.redhat.com/jiwei/jiwei-0926-03-cnxn5/) and the sanity check results. 
FYI if enabling the API, and without changing anything else, the installation could succeed. 

Description of problem:

When adding new nodes to the existing cluster, the newly allocated node-subnet can be overlapped with the existing node.

Version-Release number of selected component (if applicable):

openshift 4.10.30

How reproducible:

It's quite hard to reproduce but  there is a possibility it can happen any time. 

Steps to Reproduce:

1. Create a OVN dual-stack cluster
2. add nodes to the existing cluster
3. check the allocated node subnet 

Actual results:

Some newly added nodes have the same node-subnet and ovn-k8s-mp0 IP as some existing nodes.

Expected results:

Should have duplicated node-subnet and ovn-k8s-mp0 IP

Additional info:

Additional info can be found at the case 03329155 and the must-gather attached(comment #1) 

% omg logs ovnkube-master-v8crc -n openshift-ovn-kubernetes -c ovnkube-master | grep '2022-09-30T06:42:50.857'
2022-09-30T06:42:50.857031565Z W0930 06:42:50.857020       1 master.go:1422] Did not find any logical switches with other-config
2022-09-30T06:42:50.857112441Z I0930 06:42:50.857099       1 master.go:1003] Allocated Subnets [10.131.0.0/23 fd02:0:0:4::/64] on Node worker01.ss1.samsung.local
2022-09-30T06:42:50.857122455Z I0930 06:42:50.857105       1 master.go:1003] Allocated Subnets [10.129.4.0/23 fd02:0:0:a::/64] on Node oam04.ss1.samsung.local
2022-09-30T06:42:50.857130289Z I0930 06:42:50.857122       1 kube.go:99] Setting annotations map[k8s.ovn.org/node-subnets:{"default":["10.131.0.0/23","fd02:0:0:4::/64"]}] on node worker01.ss1.samsung.local
2022-09-30T06:42:50.857140773Z I0930 06:42:50.857132       1 kube.go:99] Setting annotations map[k8s.ovn.org/node-subnets:{"default":["10.129.4.0/23","fd02:0:0:a::/64"]}] on node oam04.ss1.samsung.local
2022-09-30T06:42:50.857166726Z I0930 06:42:50.857156       1 master.go:1003] Allocated Subnets [10.128.2.0/23 fd02:0:0:5::/64] on Node oam01.ss1.samsung.local
2022-09-30T06:42:50.857176132Z I0930 06:42:50.857157       1 master.go:1003] Allocated Subnets [10.131.0.0/23 fd02:0:0:4::/64] on Node rhel01.ss1.samsung.local
2022-09-30T06:42:50.857176132Z I0930 06:42:50.857167       1 kube.go:99] Setting annotations map[k8s.ovn.org/node-subnets:{"default":["10.128.2.0/23","fd02:0:0:5::/64"]}] on node oam01.ss1.samsung.local
2022-09-30T06:42:50.857185257Z I0930 06:42:50.857157       1 master.go:1003] Allocated Subnets [10.128.6.0/23 fd02:0:0:d::/64] on Node call03.ss1.samsung.local
2022-09-30T06:42:50.857192996Z I0930 06:42:50.857183       1 kube.go:99] Setting annotations map[k8s.ovn.org/node-subnets:{"default":["10.131.0.0/23","fd02:0:0:4::/64"]}] on node rhel01.ss1.samsung.local
2022-09-30T06:42:50.857200017Z I0930 06:42:50.857190       1 kube.go:99] Setting annotations map[k8s.ovn.org/node-subnets:{"default":["10.128.6.0/23","fd02:0:0:d::/64"]}] on node call03.ss1.samsung.local
2022-09-30T06:42:50.857282717Z I0930 06:42:50.857258       1 master.go:1003] Allocated Subnets [10.130.2.0/23 fd02:0:0:7::/64] on Node call01.ss1.samsung.local
2022-09-30T06:42:50.857304886Z I0930 06:42:50.857293       1 kube.go:99] Setting annotations map[k8s.ovn.org/node-subnets:{"default":["10.130.2.0/23","fd02:0:0:7::/64"]}] on node call01.ss1.samsung.local
2022-09-30T06:42:50.857338896Z I0930 06:42:50.857314       1 master.go:1003] Allocated Subnets [10.128.4.0/23 fd02:0:0:9::/64] on Node f501.ss1.samsung.local
2022-09-30T06:42:50.857349485Z I0930 06:42:50.857329       1 master.go:1003] Allocated Subnets [10.131.2.0/23 fd02:0:0:8::/64] on Node call02.ss1.samsung.local
2022-09-30T06:42:50.857371344Z I0930 06:42:50.857354       1 kube.go:99] Setting annotations map[k8s.ovn.org/node-subnets:{"default":["10.128.4.0/23","fd02:0:0:9::/64"]}] on node f501.ss1.samsung.local
2022-09-30T06:42:50.857371344Z I0930 06:42:50.857361       1 kube.go:99] Setting annotations map[k8s.ovn.org/node-subnets:{"default":["10.131.2.0/23","fd02:0:0:8::/64"]}] on node call02.ss1.samsung.local

Description of problem:

 

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1.

2.

3.

 

Actual results:

 

Expected results:

 

Additional info:

Please fill in the following template while reporting a bug and provide as much relevant information as possible. Doing so will give us the best chance to find a prompt resolution.

Affected Platforms:

Is it an

  1. internal CI failure 
  2. customer issue / SD
  3. internal RedHat testing failure

 

If it is an internal RedHat testing failure:

  • Please share a kubeconfig or creds to a live cluster for the assignee to debug/troubleshoot along with reproducer steps (specially if it's a telco use case like ICNI, secondary bridges or BM+kubevirt).

 

If it is a CI failure:

 

  • Did it happen in different CI lanes? If so please provide links to multiple failures with the same error instance
  • Did it happen in both sdn and ovn jobs? If so please provide links to multiple failures with the same error instance
  • Did it happen in other platforms (e.g. aws, azure, gcp, baremetal etc) ? If so please provide links to multiple failures with the same error instance
  • When did the failure start happening? Please provide the UTC timestamp of the networking outage window from a sample failure run
  • If it's a connectivity issue,
  • What is the srcNode, srcIP and srcNamespace and srcPodName?
  • What is the dstNode, dstIP and dstNamespace and dstPodName?
  • What is the traffic path? (examples: pod2pod? pod2external?, pod2svc? pod2Node? etc)

 

If it is a customer / SD issue:

 

  • Provide enough information in the bug description that Engineering doesn’t need to read the entire case history.
  • Don’t presume that Engineering has access to Salesforce.
  • Please provide must-gather and sos-report with an exact link to the comment in the support case with the attachment.  The format should be: https://access.redhat.com/support/cases/#/case/<case number>/discussion?attachmentId=<attachment id>
  • Describe what each attachment is intended to demonstrate (failed pods, log errors, OVS issues, etc).  
  • Referring to the attached must-gather, sosreport or other attachment, please provide the following details:
    • If the issue is in a customer namespace then provide a namespace inspect.
    • If it is a connectivity issue:
      • What is the srcNode, srcNamespace, srcPodName and srcPodIP?
      • What is the dstNode, dstNamespace, dstPodName and  dstPodIP?
      • What is the traffic path? (examples: pod2pod? pod2external?, pod2svc? pod2Node? etc)
      • Please provide the UTC timestamp networking outage window from must-gather
      • Please provide tcpdump pcaps taken during the outage filtered based on the above provided src/dst IPs
    • If it is not a connectivity issue:
      • Describe the steps taken so far to analyze the logs from networking components (cluster-network-operator, OVNK, SDN, openvswitch, ovs-configure etc) and the actual component where the issue was seen based on the attached must-gather. Please attach snippets of relevant logs around the window when problem has happened if any.
  • For OCPBUGS in which the issue has been identified, label with “sbr-triaged”
  • For OCPBUGS in which the issue has not been identified and needs Engineering help for root cause, labels with “sbr-untriaged”
  • Note: bugs that do not meet these minimum standards will be closed with label “SDN-Jira-template”

This is a clone of issue OCPBUGS-4101. The following is the description of the original issue:

Description of problem:

We experienced two separate upgrade failures relating to the introduction of the SYSTEM_RESERVED_ES node sizing parameter, causing kubelet to stop running.

One cluster (clusterA) upgraded from 4.11.14 to 4.11.17. It experienced an issue whereby 
   /etc/node-sizing.env 
on its master nodes contained an empty SYSTEM_RESERVED_ES value:

---
cat /etc/node-sizing.env 
SYSTEM_RESERVED_MEMORY=5.36Gi
SYSTEM_RESERVED_CPU=0.11
SYSTEM_RESERVED_ES=
---

causing the kubelet to not start up. To restore service, this file was manually updated to set a value (1Gi), and kubelet was restarted.

We are uncertain what conditions led to this occuring on the clusterA master nodes as part of the upgrade.

A second cluster (clusterB) upgraded from 4.11.16 to 4.11.17. It experienced an issue whereby worker nodes were impacted by a similar problem, however this was because a custom node-sizing-enabled.env MachineConfig which did not set SYSTEM_RESERVED_ES

This caused existing worker nodes to go into a NotReady state after the ugprade, and additionally new nodes did not join the cluster as their kubelet would become impacted. 

For clusterB the conditions are more well-known of why the value is empty.

However, for both clusters, if SYSTEM_RESERVED_ES ends up as empty on a node it can cause the kubelet to not start. 

We have some asks as a result:
- Can MCO be made to recover from this situation if it occurs, perhaps  through application of a safe default if none exists, such that kubelet would start correctly?
- Can there possibly be alerting that could indicate and draw attention to the misconfiguration?

Version-Release number of selected component (if applicable):

4.11.17

How reproducible:

Have not been able to reproduce it on a fresh cluster upgrading from 4.11.16 to 4.11.17

Expected results:

If SYSTEM_RESERVED_ES is empty in /etc/node-sizing*env then a default should be applied and/or kubelet able to continue running.

Additional info:

 

Tracker issue for bootimage bump in 4.12. This issue should block issues which need a bootimage bump to fix.

The previous bump was OCPBUGS-2997.

Description of problem:

when provisioningNetwork is changed from Disabled to Managed/Unmanaged, the ironic-proxy daemonset is not removed

This causes the metal3 pod to be stuck in pending, since both pods are trying to use port 6385 on the host:

0/3 nodes are available: 3 node(s) didn't have free ports for the requested pod ports. preemption: 0/3 nodes are available: 3 node(s) didn't have free ports for the requested pod ports

Version-Release number of selected component (if applicable):

4.12rc.4

How reproducible:

Every time for me

Steps to Reproduce:

1. On a multinode cluster, change the provisioningNetwork from Disabled to Unmanaged (I didn't try Managed)
2.
3.

Actual results:

0/3 nodes are available: 3 node(s) didn't have free ports for the requested pod ports. preemption: 0/3 nodes are available: 3 node(s) didn't have free ports for the requested pod ports

Expected results:

I believe the ironic-proxy daemonset should be deleted when the provisioningNetwork is set to Managed/Unmanaged

Additional info:

If I manually delete the ironic-proxy Daemonset, the controller does not re-create it.

This is a clone of issue OCPBUGS-4049. The following is the description of the original issue:

Description of problem:

In case of CRC we provision the cluster first and the create the disk image out of it and that what we share to our users. Now till now we always remove the pull secret from the cluster after provision it using https://github.com/crc-org/snc/blob/master/snc.sh#L241-L258 and it worked without any issue till 4.11.x but for 4.12.0-rc.1 we are seeing that MCO not able to reconcile.

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1. Create a single node cluster using cluster bot `launch 4.12.0-rc.1 aws,single-node` 

2. Once cluster is provisioned update the pull secret from the config 

```
$ cat pull-secret.yaml 
apiVersion: v1
data:
  .dockerconfigjson: e30K
kind: Secret
metadata:
  name: pull-secret
  namespace: openshift-config
type: kubernetes.io/dockerconfigjson
$ oc replace -f pull-secret.yaml
```

3. Wait for MCO recocile and you will see failure to reconcile MCO

Actual results:

$ oc get mcp
NAME     CONFIG                                             UPDATED   UPDATING   DEGRADED   MACHINECOUNT   READYMACHINECOUNT   UPDATEDMACHINECOUNT   DEGRADEDMACHINECOUNT   AGE
master   rendered-master-66086aa249a9f92b773403f7c3745ea4   False     True       True       1              0                   0                     1                      94m
worker   rendered-worker-0c07becff7d3c982e24257080cc2981b   True      False      False      0              0                   0                     0                      94m


$ oc get co machine-config
NAME             VERSION       AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
machine-config   4.12.0-rc.1   True        False         True       93m     Failed to resync 4.12.0-rc.1 because: error during syncRequiredMachineConfigPools: [timed out waiting for the condition, error pool master is not ready, retrying. Status: (pool degraded: true total: 1, ready 0, updated: 0, unavailable: 0)]

$ oc logs machine-config-daemon-nf9mg -n openshift-machine-config-operator
[...]
I1123 15:00:37.864581   10194 run.go:19] Running: podman pull -q --authfile /var/lib/kubelet/config.json quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:ffa3568233298408421ff7da60e5c594fb63b2551c6ab53843eb51c8cf6838ba
Error: initializing source docker://quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:ffa3568233298408421ff7da60e5c594fb63b2551c6ab53843eb51c8cf6838ba: (Mirrors also failed: [quayio-pull-through-cache-us-west-2-ci.apps.ci.l2s4.p1.openshiftapps.com/openshift-release-dev/ocp-v4.0-art-dev@sha256:ffa3568233298408421ff7da60e5c594fb63b2551c6ab53843eb51c8cf6838ba: reading manifest sha256:ffa3568233298408421ff7da60e5c594fb63b2551c6ab53843eb51c8cf6838ba in quayio-pull-through-cache-us-west-2-ci.apps.ci.l2s4.p1.openshiftapps.com/openshift-release-dev/ocp-v4.0-art-dev: unauthorized: authentication required]): quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:ffa3568233298408421ff7da60e5c594fb63b2551c6ab53843eb51c8cf6838ba: reading manifest sha256:ffa3568233298408421ff7da60e5c594fb63b2551c6ab53843eb51c8cf6838ba in quay.io/openshift-release-dev/ocp-v4.0-art-dev: unauthorized: access to the requested resource is not authorized
W1123 15:00:39.186103   10194 run.go:45] podman failed: running podman pull -q --authfile /var/lib/kubelet/config.json quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:ffa3568233298408421ff7da60e5c594fb63b2551c6ab53843eb51c8cf6838ba failed: Error: initializing source docker://quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:ffa3568233298408421ff7da60e5c594fb63b2551c6ab53843eb51c8cf6838ba: (Mirrors also failed: [quayio-pull-through-cache-us-west-2-ci.apps.ci.l2s4.p1.openshiftapps.com/openshift-release-dev/ocp-v4.0-art-dev@sha256:ffa3568233298408421ff7da60e5c594fb63b2551c6ab53843eb51c8cf6838ba: reading manifest sha256:ffa3568233298408421ff7da60e5c594fb63b2551c6ab53843eb51c8cf6838ba in quayio-pull-through-cache-us-west-2-ci.apps.ci.l2s4.p1.openshiftapps.com/openshift-release-dev/ocp-v4.0-art-dev: unauthorized: authentication required]): quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:ffa3568233298408421ff7da60e5c594fb63b2551c6ab53843eb51c8cf6838ba: reading manifest sha256:ffa3568233298408421ff7da60e5c594fb63b2551c6ab53843eb51c8cf6838ba in quay.io/openshift-release-dev/ocp-v4.0-art-dev: unauthorized: access to the requested resource is not authorized
: exit status 125; retrying...

Expected results:

 

Additional info:

 

Description of problem:

In looking at jobs on an accepted payload at https://amd64.ocp.releases.ci.openshift.org/releasestream/4.12.0-0.ci/release/4.12.0-0.ci-2022-08-30-122201 , I observed this job https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/periodic-ci-openshift-release-master-ci-4.12-e2e-aws-sdn-serial/1564589538850902016 with "Undiagnosed panic detected in pod" "pods/openshift-controller-manager-operator_openshift-controller-manager-operator-74bf985788-8v9qb_openshift-controller-manager-operator.log.gz:E0830 12:41:48.029165       1 runtime.go:79] Observed a panic: "invalid memory address or nil pointer dereference" (runtime error: invalid memory address or nil pointer dereference)" 

Version-Release number of selected component (if applicable):

4.12

How reproducible:

probably relatively easy to reproduce (but not consistently) given it's happened several times according to this search: https://search.ci.openshift.org/?search=Observed+a+panic%3A+%22invalid+memory+address+or+nil+pointer+dereference%22&maxAge=48h&context=1&type=junit&name=&excludeName=&maxMatches=5&maxBytes=20971520&groupBy=job

Steps to Reproduce:

1. let nightly payloads run or run one of the presubmit jobs mentioned in the search above
2.
3.

Actual results:

Observed a panic: "invalid memory address or nil pointer dereference" (runtime error: invalid memory address or nil pointer dereference)}

Expected results:

no panics

Additional info:

 

This is a clone of issue OCPBUGS-2144. The following is the description of the original issue:

Description of problem:

Azure IPI creates boot images using the image gallery API now, it will create two image definition resources for both hyperVGeneration V1 and V2. For arm64 cluster, the architecture in image definition hyperVGeneration V1 is x64, but it should be Arm64

Version-Release number of selected component (if applicable):

./openshift-install version
./openshift-install 4.12.0-0.nightly-arm64-2022-10-07-204251
built from commit 7b739cde1e0239c77fabf7622e15025d32fc272c
release image registry.ci.openshift.org/ocp-arm64/release-arm64@sha256:d2569be4ba276d6474aea016536afbad1ce2e827b3c71ab47010617a537a8b11
release architecture arm64

How reproducible:

always

Steps to Reproduce:

1.Create arm cluster using latest arm64 nightly build 
2.Check image definition created for hyperVGeneration V1

Actual results:

The architecture field is x64.
###
$ az sig image-definition show --gallery-name ${gallery_name} --gallery-image-definition lwanazarm1008-rc8wh --resource-group ${rg} | jq -r ".architecture"
x64
The image version under this image definition is for aarch64.
###
$ az sig image-version show --gallery-name gallery_lwanazarm1008_rc8wh --gallery-image-definition lwanazarm1008-rc8wh --resource-group lwanazarm1008-rc8wh-rg --gallery-image-version 412.86.20220922 | jq -r ".storageProfile.osDiskImage.source"
{  "uri": "https://clustermuygq.blob.core.windows.net/vhd/rhcosmuygq.vhd"}
$ az storage blob show --container-name vhd --name rhcosmuygq.vhd --account-name clustermuygq --account-key $account_key | jq -r ".metadata"
{  "Source_uri": "https://rhcos.blob.core.windows.net/imagebucket/rhcos-412.86.202209220538-0-azure.aarch64.vhd"}

Expected results:

Although no VMs with HypergenV1 can be provisioned, the architecture field should be Arm64 even for hyperGenerationV1 image definitions

Additional info:

1.The architecture in image definition hyperVGeneration V2 is Arm64 and installer will use V2 by default for arm64 vm_type, so installation didn't fail by default. But we still need to make architecture consistent in V1.

2.Need to set architecture field for both V1 and V2, now we only set architecture in V2 image definition resource. 
https://github.com/openshift/installer/blob/master/data/data/azure/vnet/main.tf#L100-L128 

This is a clone of issue OCPBUGS-3277. The following is the description of the original issue:

I saw this occur one time when running installs in a continuous loop. This was with COMPaCT_IPV4 in a non-disconnected setup.

WaitForBootrapComplete shows it can't access the API

level=info msg=Unable to retrieve cluster metadata from Agent Rest API: no clusterID known for the cluster
level=debug msg=cluster is not registered in rest API
level=debug msg=infraenv is not registered in rest API

This is because create-cluster-and-infraenv.service failed

Failed Units: 2
  create-cluster-and-infraenv.service
  NetworkManager-wait-online.service

The agentbasedinstaller register command wasn't able to retrieve the image to get the version

Nov 03 23:03:24 master-0 create-cluster-and-infraenv[2702]: time="2022-11-03T23:03:24Z" level=error msg="command 'oc adm release info -o template --template '\{{.metadata.version}}' --insecure=false registry.ci.openshift.org/ocp/release:4.12.0-0.nightly-2022-10-25-210451 --registry-config=/tmp/registry-config3852044519' exited with non-zero exit code 1: \nerror: unable to read image registry.ci.openshift.org/ocp/release:4.12.0-0.nightly-2022-10-25-210451: Get \"https://registry.ci.openshift.org/v2/\": dial tcp: lookup registry.ci.openshift.org on 192.168.111.1:53: read udp 192.168.111.80:51315->192.168.111.1:53: i/o timeout\n"
Nov 03 23:03:24 master-0 create-cluster-and-infraenv[2702]: time="2022-11-03T23:03:24Z" level=error msg="failed to get image openshift version from release image registry.ci.openshift.org/ocp/release:4.12.0-0.nightly-2022-10-25-210451" error="command 'oc adm release info -o template --template '\{{.metadata.version}}' --insecure=false registry.ci.openshift.org/ocp/release:4.12.0-0.nightly-2022-10-25-210451 --registry-config=/tmp/registry-config3852044519' exited with non-zero exit code 1: \nerror: unable to read image registry.ci.openshift.org/ocp/release:4.12.0-0.nightly-2022-10-25-210451: Get \"https://registry.ci.openshift.org/v2/\": dial tcp: lookup registry.ci.openshift.org on 192.168.111.1:53: read udp 192.168.111.80:51315->192.168.111.1:53: i/o timeout\n"

This occurs when attempting to get the release here:
https://github.com/openshift/assisted-service/blob/master/cmd/agentbasedinstaller/register.go#L58

 

We should add a retry mechanism or restart the service to handle spurious network failures like this.

 

 

This is a clone of issue OCPBUGS-3414. The following is the description of the original issue:

Description of problem:

The current implementation of new OCI FBC feature omits the creation of the ImageContentSourcePolicy
 and CatalogSource resources

 

Description of problem:

Currently when installing Openshift on the Openstack cluster name length limit is allowed to  14 characters.
Customer wants to know if is it possible to override this validation when installing Openshift on Openstack and create a cluster name that is greater than 14 characters.

Version : OCP 4.8.5 UPI Disconnected 
Environment : Openstack 16 

Issue:
User reports that they are getting error for OCP cluster in Openstack UPI, where the name of the cluster is > 14 characters.

Error events :
~~~
fatal: [localhost]: FAILED! => {"changed": true, "cmd": ["/usr/local/bin/openshift-install", "create", "manifests", "--dir=/home/gitlab-runner/builds/WK8mkokN/0/CPE/SKS/pipelines/non-prod/ocp4-openstack-build/ocpinstaller/install-upi"], "delta": "0:00:00.311397", "end": "2022-09-03 21:38:41.974608", "msg": "non-zero return code", "rc": 1, "start": "2022-09-03 21:38:41.663211", "stderr": "level=fatal msg=failed to fetch Master Machines: failed to load asset \"Install Config\": invalid \"install-config.yaml\" file: metadata.name: Invalid value: \"sks-osp-inf-cpe-1-cbr1a\": cluster name is too long, please restrict it to 14 characters", "stderr_lines": ["level=fatal msg=failed to fetch Master Machines: failed to load asset \"Install Config\": invalid \"install-config.yaml\" file: metadata.name: Invalid value: \"sks-osp-inf-cpe-1-cbr1a\": cluster name is too long, please restrict it to 14 characters"], "stdout": "", "stdout_lines": []}
~~~

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

 

Actual results:

Users are getting error "cluster name is too long" when clustername contains more than 14 characters for OCP on Openstack

Expected results:

The 14 characters limit should be change for the OCP clustername on Openstack

Additional info:

 

Assisted installations default to setting platform: baremetal. Using the ReST API, it is possible to select vsphere (or ovirt) as the platform type. In every case, the actual platform data is filled in by assisted-service, and cannot be specified by the user.

The ClusterDeployment resource (from Hive) contains a Platform field. We could look for a platform specified in this field and set that platform when creating the cluster in the create-cluster-and-infraenv service. If ZTP were ever to support other deployment methods, this would probably be a good choice for that also.

We should probably warn the user if they attempt to put any data inside the platform settings, as this will be ignored. This shouldn't be an error, though, as it would prevent users from using existing install configs. Perhaps it should be an error if they specify a platform we don't support.

 

Note: https://issues.redhat.com/browse/AGENT-284?focusedCommentId=21019997&page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel#comment-21019997 

[Pawan]: We can simply use the PlatformType from ACI and then no assisted service client changes are required. We will throw an error if the user provides an unsupported platformType ( aws, gcp, etc)

 

Ignoring the unwanted Platform settings from install-config.yaml to be handled in https://issues.redhat.com/browse/AGENT-348

This is a clone of issue OCPBUGS-2598. The following is the description of the original issue:

Description of problem:

Liveness probe of ipsec pods fail with large clusters. Currently the command that is executed in the ipsec container is
ovs-appctl -t ovs-monitor-ipsec ipsec/status && ipsec status
The problem is with command "ipsec/status". In clusters with high node count this command will return a list with all the node daemons of the cluster. This means that as the node count raises the completion time of the command raises too. 

This makes the main command 

ovs-appctl -t ovs-monitor-ipsec

To hang until the subcommand is finished.

As the liveness and readiness probe values are hardcoded in the manifest of the ipsec container herehttps//github.com/openshift/cluster-network-operator/blob/9c1181e34316d34db49d573698d2779b008bcc20/bindata/network/ovn-kubernetes/common/ipsec.yaml] the liveness timeout of the container probe of 60 seconds start to be  insufficient as the node count list is growing. This resulted in a cluster with 170 + nodes to have 15+ ipsec pods in a crashloopbackoff state.

Version-Release number of selected component (if applicable):

Openshift Container Platform 4.10 but i think the same will be visible to other versions too.

How reproducible:

I was not able to reproduce due to an extreamely high amount of resources are needed and i think that there is no point as we have spotted the issue.

Steps to Reproduce:

1. Install an Openshift cluster with IPSEC enabled
2. Scale to 170+ nodes or more
3. Notice that the ipsec pods will start getting in a Crashloopbackoff state with failed Liveness/Readiness probes.

Actual results:

Ip Sec pods are stuck in a Crashloopbackoff state

Expected results:

Ip Sec pods to work normally

Additional info:

We have provided a workaround where CVO and CNO operators are scaled to 0 replicas in order for us to be able to increase the liveness probe limit to a value of 600 that recovered the cluster. 
As a next step the customer will try to reduce the node count and restore the default liveness timeout value along with bringing the operators back to see if the cluster will stabilize.

 

Description of problem:

Since coreos-installer writes to stdout, its logs are not available for us.

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

Description of problem:

4.12 tech-preview jobs are suffering:

$ w3m -dump -cols 200 'https://search.ci.openshift.org/?search=event+happened.*no+matches+for+kind.*InsightsDataGather&maxAge=48h&type=junit' | grep 'failures match' | sort
periodic-ci-openshift-release-master-ci-4.12-e2e-aws-sdn-techpreview (all) - 10 runs, 100% failed, 100% of failures match = 100% impact
periodic-ci-openshift-release-master-ci-4.12-e2e-aws-sdn-techpreview-serial (all) - 10 runs, 100% failed, 90% of failures match = 90% impact
periodic-ci-openshift-release-master-ci-4.12-e2e-azure-sdn-techpreview (all) - 10 runs, 100% failed, 100% of failures match = 100% impact
periodic-ci-openshift-release-master-ci-4.12-e2e-azure-sdn-techpreview-serial (all) - 10 runs, 100% failed, 90% of failures match = 90% impact
periodic-ci-openshift-release-master-ci-4.12-e2e-gcp-sdn-techpreview (all) - 10 runs, 100% failed, 100% of failures match = 100% impact
periodic-ci-openshift-release-master-ci-4.12-e2e-gcp-sdn-techpreview-serial (all) - 10 runs, 100% failed, 100% of failures match = 100% impact

with runs like this failing:

: [sig-arch] events should not repeat pathologically expand_less	0s
{  1 events happened too frequently

event happened 138 times, something is wrong: ns/default namespace/default - reason/Unable to find REST mapping for %s/%s: %w InsightsDataGather.config.openshift.io%!(EXTRA string=v1, *meta.NoKindMatchError=no matches for kind "InsightsDataGather" in version "config.openshift.io/v1")}

based on events like:

$ curl -s https://gcsweb-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/origin-ci-test/logs/periodic-ci-openshift-release-master-ci-4.12-e2e-aws-sdn-techpreview/1597393851226525696/artifacts/e2e-aws-sdn-techpreview/gather-extra/artifacts/events.json | jq -r '.items[] | select(.metadata.namespace == "default" and (.message | contains("InsightsDataGather")))'
{
  "apiVersion": "v1",
  "count": 145,
  "eventTime": null,
  "firstTimestamp": "2022-11-29T01:32:16Z",
  "involvedObject": {
    "apiVersion": "v1",
    "kind": "Namespace",
    "name": "default",
    "namespace": "default"
  },
  "kind": "Event",
  "lastTimestamp": "2022-11-29T02:19:36Z",
  "message": "InsightsDataGather.config.openshift.io%!(EXTRA string=v1, *meta.NoKindMatchError=no matches for kind \"InsightsDataGather\" in version \"config.openshift.io/v1\")",
  "metadata": {
    "creationTimestamp": "2022-11-29T01:32:16Z",
    "name": "default.172bea26177786ae",
    "namespace": "default",
    "resourceVersion": "237357",
    "uid": "187cf3a0-cf4b-4cd1-ae72-51b5d77b7e73"
  },
  "reason": "Unable to find REST mapping for %s/%s: %w",
  "reportingComponent": "",
  "reportingInstance": "",
  "source": {
    "component": "run-resourcewatch-config-observer-controller-configobservercontroller"
  },
  "type": "Warning"
}

Version-Release number of selected component (if applicable):

4.12 tech-preview jobs are impacted.

How reproducible:

100% for some job flavors, per the search CI output above.

Steps to Reproduce:

1. Look at test results for any of the impacted job flavors.

Actual results:

Lots of NoKindMatchError events for v1 InsightsDataGather (it's only v1alpha1).

Expected results:

Passing test-cases.

Additional info:

The problematic REST-mapping client was removed from 4.13/dev as part of origin#27596.

Description of problem:

The path used by --rotated-pod-logs to gather the rotated pod logs from /var/log/pods node folder via /api/v1/nodes/${NODE}/proxy/logs/${LOG_PATH} is only valid for regular pods but not for static pods.

The main problem is that, while normal pods have their rotated logs at this /var/log/pods/${POD_NAME}_${POD_UID_IN_API}/${CONTAINER_NAME}, static pods have them at /var/log/pods/${POD_NAME}_${CONFIG_HASH}/${CONTAINER_NAME} because the UID cannot be known at the time that the static pod is born (because static pods are created by kubelet before registering them in the kube-apiserver, and UID is assigned by the kube-apiserver).

The visible results of that are:

  • Spurious errors of not found resources related to the pods.
  • Rotated pod logs are not gathered even if present.

Version-Release number of selected component (if applicable):

4.10

How reproducible:

Always if there are static pods.

Steps to Reproduce:

1. oc adm inspect --rotated-pod-logs ns/openshift-etcd (or any other project with static pods).

Actual results:

  • Rotated pods not gathered.
  • Errors like these
    error: errors occurred while gathering data:
        one or more errors occurred while gathering pod-specific data for namespace: openshift-etcd
    
        [one or more errors occurred while gathering container data for pod etcd-master-0.example.net:
    
        the server could not find the requested resource, one or more errors occurred while gathering container data for pod etcd-master-1.example.net:
    
        the server could not find the requested resource, one or more errors occurred while gathering container data for pod etcd-master-2.example.net:
    
        the server could not find the requested resource]
    

Expected results:

No errors like the ones above and rotated pod logs to be gathered, if present.

Additional info:

Despite being marked as experimental, this --rotated-pod-logs is used in must-gather, so this issue can be easily reproduced by just running a default must-gather. I focused on bare oc adm inspect reproducers for simplicity.

This is a clone of issue OCPBUGS-4089. The following is the description of the original issue:

The kube-state-metric pod inside the openshift-monitoring namespace is not running as expected.

On checking the logs I am able to see that there is a memory panic

~~~
2022-11-22T09:57:17.901790234Z I1122 09:57:17.901768 1 main.go:199] Starting kube-state-metrics self metrics server: 127.0.0.1:8082
2022-11-22T09:57:17.901975837Z I1122 09:57:17.901951 1 main.go:66] levelinfomsgTLS is disabled.http2false
2022-11-22T09:57:17.902389844Z I1122 09:57:17.902291 1 main.go:210] Starting metrics server: 127.0.0.1:8081
2022-11-22T09:57:17.903191857Z I1122 09:57:17.903133 1 main.go:66] levelinfomsgTLS is disabled.http2false
2022-11-22T09:57:17.906272505Z I1122 09:57:17.906224 1 builder.go:191] Active resources: certificatesigningrequests,configmaps,cronjobs,daemonsets,deployments,endpoints,horizontalpodautoscalers,ingresses,jobs,leases,limitranges,mutatingwebhookconfigurations,namespaces,networkpolicies,nodes,persistentvolumeclaims,persistentvolumes,poddisruptionbudgets,pods,replicasets,replicationcontrollers,resourcequotas,secrets,services,statefulsets,storageclasses,validatingwebhookconfigurations,volumeattachments
2022-11-22T09:57:17.917758187Z E1122 09:57:17.917560 1 runtime.go:78] Observed a panic: "invalid memory address or nil pointer dereference" (runtime error: invalid memory address or nil pointer dereference)
2022-11-22T09:57:17.917758187Z goroutine 24 [running]:
2022-11-22T09:57:17.917758187Z k8s.io/apimachinery/pkg/util/runtime.logPanic(

{0x1635600, 0x2696e10})
2022-11-22T09:57:17.917758187Z /go/src/k8s.io/kube-state-metrics/vendor/k8s.io/apimachinery/pkg/util/runtime/runtime.go:74 +0x7d
2022-11-22T09:57:17.917758187Z k8s.io/apimachinery/pkg/util/runtime.HandleCrash({0x0, 0x0, 0xfffffffe})
2022-11-22T09:57:17.917758187Z /go/src/k8s.io/kube-state-metrics/vendor/k8s.io/apimachinery/pkg/util/runtime/runtime.go:48 +0x75
2022-11-22T09:57:17.917758187Z panic({0x1635600, 0x2696e10}

)
2022-11-22T09:57:17.917758187Z /usr/lib/golang/src/runtime/panic.go:1038 +0x215
2022-11-22T09:57:17.917758187Z k8s.io/kube-state-metrics/v2/internal/store.ingressMetricFamilies.func6(0x40)
2022-11-22T09:57:17.917758187Z /go/src/k8s.io/kube-state-metrics/internal/store/ingress.go:136 +0x189
2022-11-22T09:57:17.917758187Z k8s.io/kube-state-metrics/v2/internal/store.wrapIngressFunc.func1(

{0x17fe520, 0xc00063b590})
2022-11-22T09:57:17.917758187Z /go/src/k8s.io/kube-state-metrics/internal/store/ingress.go:175 +0x49
2022-11-22T09:57:17.917758187Z k8s.io/kube-state-metrics/v2/pkg/metric_generator.(*FamilyGenerator).Generate(...)
2022-11-22T09:57:17.917758187Z /go/src/k8s.io/kube-state-metrics/pkg/metric_generator/generator.go:67
2022-11-22T09:57:17.917758187Z k8s.io/kube-state-metrics/v2/pkg/metric_generator.ComposeMetricGenFuncs.func1({0x17fe520, 0xc00063b590}

)
2022-11-22T09:57:17.917758187Z /go/src/k8s.io/kube-state-metrics/pkg/metric_generator/generator.go:107 +0xd8
~~~

Logs are attached to the support case

Description of problem:

On MicroShift, the Route API is served by kube-apiserver as a CRD. Reusing the same defaulting implementation as vanilla OpenShift through a patch to kube- apiserver is expected to resolve OCPBUGS-4189 but have no detectable effect on OCP.

Additional info:

This patch will be inert on OCP, but is implemented in openshift/kubernetes because MicroShift ingests kube-apiserver through its build-time dependency on openshift/kubernetes.

For the disconnected installation , we should not be able to provision machines successfully with publicIP:true , this has been the behavior earlier till -
4.11 and around 17th Aug nightly released 4.12 , but it has started allowing creation of machines with publicIP:true set in machineset

Issue reproduced on - Cluster version - 4.12.0-0.nightly-2022-08-23-223922

It is always reproducible .

Steps :
Create machineset using yaml with 
{"spec":{"providerSpec":{"value":{"publicIP": true}}}}

Machineset created successfully and machine provisioned successfully .

This seems to be regression bug refer - https://bugzilla.redhat.com/show_bug.cgi?id=1889620

Here is the must gather log - https://drive.google.com/file/d/1UXjiqAx7obISTxkmBsSBuo44ciz9HD1F/view?usp=sharing

Here is the test successfully ran for 4.11 , for exactly same profile and machine creation failed with InvalidConfiguration Error- https://mastern-jenkins-csb-openshift-qe.apps.ocp-c1.prod.psi.redhat.com/job/ocp-common/job/Runner/575822/console

We can confirm disconnected cluster using below  there would be lot of mirrors used in those - 

oc get ImageContentSourcePolicy image-policy-aosqe -o yaml 

apiVersion: operator.openshift.io/v1alpha1
kind: ImageContentSourcePolicy
metadata:
  creationTimestamp: "2022-08-24T09:08:47Z"
  generation: 1
  name: image-policy-aosqe
  resourceVersion: "34648"
  uid: 20e45d6d-e081-435d-b6bb-16c4ca21c9d6
spec:
  repositoryDigestMirrors:
  - mirrors:
    - miyadav-2408a.mirror-registry.qe.azure.devcluster.openshift.com:6001/olmqe
    source: quay.io/olmqe
  - mirrors:
    - miyadav-2408a.mirror-registry.qe.azure.devcluster.openshift.com:6001/openshifttest
    source: quay.io/openshifttest
  - mirrors:
    - miyadav-2408a.mirror-registry.qe.azure.devcluster.openshift.com:6001/openshift-qe-optional-operators
    source: quay.io/openshift-qe-optional-operators
  - mirrors:
    - miyadav-2408a.mirror-registry.qe.azure.devcluster.openshift.com:6002
    source: registry.redhat.io
  - mirrors:
    - miyadav-2408a.mirror-registry.qe.azure.devcluster.openshift.com:6002
    source: registry.stage.redhat.io
  - mirrors:
    - miyadav-2408a.mirror-registry.qe.azure.devcluster.openshift.com:6002
    source: brew.registry.redhat.io

 

 

This is a clone of issue OCPBUGS-186. The following is the description of the original issue:

Description of problem:
When resizing the browser window, the PipelineRun task status bar would overlap the status text that says "Succeeded" in the screenshot.

Actual results:
Status text is overlapped by the task status bar

Expected results:
Status text breaks to a newline or gets shortened by "..."

Description of problem:

NPE on topology if creates a k8s svc and KSVC which has no metadata in template

Version-Release number of selected component (if applicable):

 

How reproducible:

Always

Steps to Reproduce:

1. create a KSVC from admin -> serving -> create service
2. create a k8s svc from search service (create)

Actual results:

topology breaks (see attached screenshot)

Expected results:

topology shouldn't break

Additional info:

Description of problem:

oc --context build02 get clusterversion
NAME      VERSION       AVAILABLE   PROGRESSING   SINCE   STATUS
version   4.12.0-ec.1   True        False         45h     Error while reconciling 4.12.0-ec.1: the cluster operator kube-controller-manager is degraded

oc --context build02 get co kube-controller-manager
NAME                      VERSION       AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
kube-controller-manager   4.12.0-ec.1   True        False         True       2y87d   GarbageCollectorDegraded: error fetching rules: Get "https://thanos-querier.openshift-monitoring.svc:9091/api/v1/rules": dial tcp 172.30.153.28:9091: connect: cannot assign requested address

Version-Release number of selected component (if applicable):

How reproducible:

Steps to Reproduce:
1.
2.
3.

Actual results:

Expected results:

Additional info:

build02 is a build farm cluster in CI production.
I can provide credentials to access the cluster if needed.

Description of problem:

Image registry pods panic while deploying OCP in ap-south-2 AWS region

Version-Release number of selected component (if applicable):

4.11.2

How reproducible:

Deploy OCP in AWS ap-south-2 region

Steps to Reproduce:

Deploy OCP in AWS ap-south-2 region 

Actual results:

panic: Invalid region provided: ap-south-2

Expected results:

Image registry pods should come up with no errors

Additional info:

 

 

 

 

 

This is a clone of issue OCPBUGS-6213. The following is the description of the original issue:

Please review the following PR: https://github.com/openshift/machine-config-operator/pull/3450

The PR has been automatically opened by ART (#aos-art) team automation and indicates
that the image(s) being used downstream for production builds are not consistent
with the images referenced in this component's github repository.

Differences in upstream and downstream builds impact the fidelity of your CI signal.

If you disagree with the content of this PR, please contact @release-artists
in #aos-art to discuss the discrepancy.

Closing this issue without addressing the difference will cause the issue to
be reopened automatically.

Description of problem:

Install a single node cluster on AWS, then enable TechPreview, cause the cluster error. 
The CMA and CAPI CMA shouldn't be on the same port.

Version-Release number of selected component (if applicable):

4.11.9

How reproducible:

always

Steps to Reproduce:

1.Launch 4.11.9 single node cluster on AWS
liuhuali@Lius-MacBook-Pro huali-test % oc get clusterversion
NAME      VERSION   AVAILABLE   PROGRESSING   SINCE   STATUS
version   4.11.9    True        False         34m     Cluster version is 4.11.9
liuhuali@Lius-MacBook-Pro huali-test % oc get co
NAME                                       VERSION   AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
authentication                             4.11.9    True        False         False      31m     
baremetal                                  4.11.9    True        False         False      49m     
cloud-controller-manager                   4.11.9    True        False         False      52m     
cloud-credential                           4.11.9    True        False         False      53m     
cluster-autoscaler                         4.11.9    True        False         False      48m     
config-operator                            4.11.9    True        False         False      50m     
console                                    4.11.9    True        False         False      37m     
csi-snapshot-controller                    4.11.9    True        False         False      49m     
dns                                        4.11.9    True        False         False      48m     
etcd                                       4.11.9    True        False         False      47m     
image-registry                             4.11.9    True        False         False      43m     
ingress                                    4.11.9    True        False         False      86s     
insights                                   4.11.9    True        False         False      43m     
kube-apiserver                             4.11.9    True        False         False      43m     
kube-controller-manager                    4.11.9    True        False         False      47m     
kube-scheduler                             4.11.9    True        False         False      44m     
kube-storage-version-migrator              4.11.9    True        False         False      50m     
machine-api                                4.11.9    True        False         False      44m     
machine-approver                           4.11.9    True        False         False      49m     
machine-config                             4.11.9    True        False         False      49m     
marketplace                                4.11.9    True        False         False      48m     
monitoring                                 4.11.9    True        False         False      56s     
network                                    4.11.9    True        False         False      52m     
node-tuning                                4.11.9    True        False         False      49m     
openshift-apiserver                        4.11.9    True        False         False      72s     
openshift-controller-manager               4.11.9    True        False         False      39m     
openshift-samples                          4.11.9    True        False         False      43m     
operator-lifecycle-manager                 4.11.9    True        False         False      49m     
operator-lifecycle-manager-catalog         4.11.9    True        False         False      49m     
operator-lifecycle-manager-packageserver   4.11.9    True        False         False      104s    
service-ca                                 4.11.9    True        False         False      50m     
storage                                    4.11.9    True        False         False      49m     
liuhuali@Lius-MacBook-Pro huali-test % oc get node
NAME                                         STATUS   ROLES           AGE   VERSION
ip-10-0-137-222.us-east-2.compute.internal   Ready    master,worker   53m   v1.24.0+dc5a2fd

2.Enable TechPreview
spec:
  featureSet: TechPreviewNoUpgrade

liuhuali@Lius-MacBook-Pro huali-test % oc edit featuregate                           
featuregate.config.openshift.io/cluster edited

3.Check the cluster
liuhuali@Lius-MacBook-Pro huali-test % oc get pod  -n openshift-cloud-controller-manager
NAME                                            READY   STATUS    RESTARTS       AGE
aws-cloud-controller-manager-5888c85fc6-28tgt   1/1     Running   12 (10m ago)   55m
liuhuali@Lius-MacBook-Pro huali-test % oc get clusterversion                            
NAME      VERSION   AVAILABLE   PROGRESSING   SINCE   STATUS
version   4.11.9    True        False         111m    Error while reconciling 4.11.9: the workload openshift-cluster-machine-approver/machine-approver-capi has not yet successfully rolled out
liuhuali@Lius-MacBook-Pro huali-test % oc get co
NAME                                       VERSION   AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
authentication                             4.11.9    False       False         False      9m44s   OAuthServerRouteEndpointAccessibleControllerAvailable: Get "https://oauth-openshift.apps.huliu-aws411arn2.qe.devcluster.openshift.com/healthz": context deadline exceeded (Client.Timeout exceeded while awaiting headers)...
baremetal                                  4.11.9    True        False         False      128m    
cloud-controller-manager                   4.11.9    True        False         False      131m    
cloud-credential                           4.11.9    True        False         False      133m    
cluster-api                                4.11.9    True        False         False      41m     
cluster-autoscaler                         4.11.9    True        False         False      128m    
config-operator                            4.11.9    True        False         False      129m    
console                                    4.11.9    False       True          False      10m     DeploymentAvailable: 0 replicas available for console deployment...
csi-snapshot-controller                    4.11.9    True        False         False      4m52s   
dns                                        4.11.9    True        False         False      128m    
etcd                                       4.11.9    True        False         False      127m    
image-registry                             4.11.9    True        False         False      123m    
ingress                                    4.11.9    True        False         False      3m15s   
insights                                   4.11.9    True        False         False      122m    
kube-apiserver                             4.11.9    True        False         False      123m    
kube-controller-manager                    4.11.9    True        False         False      126m    
kube-scheduler                             4.11.9    True        False         False      124m    
kube-storage-version-migrator              4.11.9    True        False         False      129m    
machine-api                                4.11.9    True        False         False      124m    
machine-approver                           4.11.9    True        False         False      128m    
machine-config                             4.11.9    True        False         False      129m    
marketplace                                4.11.9    True        False         False      128m    
monitoring                                 4.11.9    True        False         False      5m1s    
network                                    4.11.9    True        False         False      131m    
node-tuning                                4.11.9    True        False         False      128m    
openshift-apiserver                        4.11.9    True        False         False      23s     
openshift-controller-manager               4.11.9    True        False         False      118m    
openshift-samples                          4.11.9    True        False         False      122m    
operator-lifecycle-manager                 4.11.9    True        False         False      128m    
operator-lifecycle-manager-catalog         4.11.9    True        False         False      128m    
operator-lifecycle-manager-packageserver   4.11.9    True        False         False      2m43s   
service-ca                                 4.11.9    True        False         False      129m    
storage                                    4.11.9    True        False         False      69m     
liuhuali@Lius-MacBook-Pro huali-test %  

Actual results:

Cluster is broken

CMA is complaining,
 message: '0/1 nodes are available: 1 node(s) didn''t have free ports for the requested
      pod ports. preemption: 0/1 nodes are available: 1 node(s) didn''t have free
      ports for the requested pod ports.'

Expected results:

Cluster should be healthy

Additional info:

Talked with dev here https://coreos.slack.com/archives/GE2HQ9QP4/p1666178083034159?thread_ts=1666176493.224399&cid=GE2HQ9QP4

Must-Gather https://drive.google.com/file/d/1Q7Ddnhbg3Cq4ptBA2ycJnGKK01As1JcF/view?usp=sharing 

If enable TechPreview during installation on single node cluster, the cluster installation failed.

Grafana has been removed in 4.11 and we can safely remove any logic in CMO that deals with Grafana (except dashboards since they are used by OCP console).

Another point to clarify is to communicate to ProdSec and ART that Grafana isn't part of OCP anymore.

Description of problem:

$ oc adm must-gather -- gather_ingress_node_firewall
[must-gather      ] OUT Using must-gather plug-in image: quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:3dec5a08681e11eedcd31f075941b74f777b9187f0e711a498a212f9d96adb2f
When opening a support case, bugzilla, or issue please include the following summary data along with any other requested information:
ClusterID: 0ef60b50-4378-431d-8ca2-faa5af098274
ClusterVersion: Stable at "4.12.0-0.nightly-2022-09-26-111919"
ClusterOperators:
    clusteroperator/insights is not available (Reporting was not allowed: your Red Hat account is not enabled for remote support or your token has expired: UHC services authentication failed
) because Reporting was not allowed: your Red Hat account is not enabled for remote support or your token has expired: UHC services authentication failed[must-gather      ] OUT namespace/openshift-must-gather-fr7kc created
[must-gather      ] OUT clusterrolebinding.rbac.authorization.k8s.io/must-gather-xx2fh created
[must-gather      ] OUT pod for plug-in image quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:3dec5a08681e11eedcd31f075941b74f777b9187f0e711a498a212f9d96adb2f created
[must-gather-xvfj4] POD 2022-09-28T16:57:00.887445531Z /bin/bash: /usr/bin/gather_ingress_node_firewall: Permission denied
[must-gather-xvfj4] OUT waiting for gather to complete
[must-gather-xvfj4] OUT downloading gather output
[must-gather-xvfj4] OUT receiving incremental file list
[must-gather-xvfj4] OUT ./
[must-gather-xvfj4] OUT 
[must-gather-xvfj4] OUT sent 27 bytes  received 40 bytes  26.80 bytes/sec
[must-gather-xvfj4] OUT total size is 0  speedup is 0.00
[must-gather      ] OUT namespace/openshift-must-gather-fr7kc deleted
[must-gather      ] OUT clusterrolebinding.rbac.authorization.k8s.io/must-gather-xx2fh deleted
Reprinting Cluster State:
When opening a support case, bugzilla, or issue please include the following summary data along with any other requested information:
ClusterID: 0ef60b50-4378-431d-8ca2-faa5af098274
ClusterVersion: Stable at "4.12.0-0.nightly-2022-09-26-111919"
ClusterOperators:
    clusteroperator/insights is not available (Reporting was not allowed: your Red Hat account is not enabled for remote support or your token has expired: UHC services authentication failed
) because Reporting was not allowed: your Red Hat account is not enabled for remote support or your token has expired: UHC services authentication failed

Version-Release number of selected component (if applicable):

4.12

How reproducible:

Always

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

This is a clone of issue OCPBUGS-3096. The following is the description of the original issue:

While the installer binary is statically linked, the terraform binaries shipped with it are dynamically linked.

This could give issues when running the installer on Linux and depending on the GLIBC version the specific Linux distribution has installed. It becomes a risk when switching the base image of the builders from ubi8 to ubi9 and trying to run the installer in cs8 or rhel8.

For example, building the installer on cs9 and trying to run it in a cs8 distribution leads to:

time="2022-10-31T14:31:47+01:00" level=debug msg="[INFO] running Terraform command: /root/test/terraform/bin/terraform version -json"
time="2022-10-31T14:31:47+01:00" level=error msg="/root/test/terraform/bin/terraform: /lib64/libc.so.6: version `GLIBC_2.32' not found (required by /root/test/terraform/bin/terraform)"
time="2022-10-31T14:31:47+01:00" level=error msg="/root/test/terraform/bin/terraform: /lib64/libc.so.6: version `GLIBC_2.34' not found (required by /root/test/terraform/bin/terraform)"
time="2022-10-31T14:31:47+01:00" level=debug msg="[INFO] running Terraform command: /root/test/terraform/bin/terraform version -json"
time="2022-10-31T14:31:47+01:00" level=error msg="/root/test/terraform/bin/terraform: /lib64/libc.so.6: version `GLIBC_2.32' not found (required by /root/test/terraform/bin/terraform)"
time="2022-10-31T14:31:47+01:00" level=error msg="/root/test/terraform/bin/terraform: /lib64/libc.so.6: version `GLIBC_2.34' not found (required by /root/test/terraform/bin/terraform)"
time="2022-10-31T14:31:47+01:00" level=debug msg="[INFO] running Terraform command: /root/test/terraform/bin/terraform init -no-color -force-copy -input=false -backend=true -get=true -upgrade=false -plugin-dir=/root/test/terraform/plugins"
time="2022-10-31T14:31:47+01:00" level=error msg="/root/test/terraform/bin/terraform: /lib64/libc.so.6: version `GLIBC_2.32' not found (required by /root/test/terraform/bin/terraform)"
time="2022-10-31T14:31:47+01:00" level=error msg="/root/test/terraform/bin/terraform: /lib64/libc.so.6: version `GLIBC_2.34' not found (required by /root/test/terraform/bin/terraform)"
time="2022-10-31T14:31:47+01:00" level=error msg="failed to fetch Cluster: failed to generate asset \"Cluster\": failure applying terraform for \"cluster\" stage: failed to create cluster: failed doing terraform init: exit status 1\n/root/test/terraform/bin/terraform: /lib64/libc.so.6: version `GLIBC_2.32' not found (required by /root/test/terraform/bin/terraform)\n/root/test/terraform/bin/terraform: /lib64/libc.so.6: version `GLIBC_2.34' not found (required by /root/test/terraform/bin/terraform)\n"

How reproducible:Always

Steps to Reproduce:{code:none}
1. Build the installer on cs9
2. Run the installer on cs8 until the terraform binary are started
3. Looking at the terrform binary with ldd or file, you can get it is not a statically linked binary and the error above might occur depending on the glibc version you are running on 

Actual results:

 

Expected results:

The terraform and providers binaries have to be statically linked as well as the installer is.

Additional info:

This comes from a build of OKD/SCOS that is happening outside of Prow on a cs9-based builder image.

One can use the Dockerfile at images/installer/Dockerfile.ci and replace the builder image with one like https://github.com/okd-project/images/blob/main/okd-builder.Dockerfile

This is a clone of issue OCPBUGS-3235. The following is the description of the original issue:

Description of problem:

Frequently we see the loading state of the topology view, even when there aren't many resources in the project.

Including an example

Prerequisites (if any, like setup, operators/versions):

Steps to Reproduce

  1. load topology
  2. if it loads successfully, keep trying  until it fails to load

Actual results:

topology will sometimes hang with the loading indicator showing indefinitely

Expected results:

topology should load consistently without fail

Reproducibility (Always/Intermittent/Only Once):

intermittent

Build Details:

4.9

Additional info:

Description of problem:

To address: 'Static Pod is managed but errored" err="managed container xxx does not have Resource.Requests'

Version-Release number of selected component (if applicable):

4.12

How reproducible:

 

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

Already merged in https://github.com/openshift/cluster-kube-controller-manager-operator/pull/660

This is a clone of issue OCPBUGS-1695. The following is the description of the original issue:

Update initial FCOS used in OKD to 36.20220906.3.2

This is a clone of issue OCPBUGS-4874. The following is the description of the original issue:

OCPBUGS-3278 is supposed to fix the issue where the user was required to provide data about the baremetal hosts (including MAC addresses) in the install-config, even though this data is ignored.

However, we determine whether we should disable the validation by checking the second CLI arg to see if it is agent.

This works when the command is:

openshift-install agent create image --dir=whatever

But fails when the argument is e.g., as in dev-scripts:

openshift-install --log-level=debug --dir=whatever agent create image

This is a clone of issue OCPBUGS-6092. The following is the description of the original issue:

Description of problem:

While configuring 4.12.0 dualstack baremetal cluster ovs-configuration.service fails
Jan 19 22:01:05 openshift-worker-0.kni-qe-4.lab.eng.rdu2.redhat.com configure-ovs.sh[14588]: Attempt 10 to bring up connection ovs-if-phys1
Jan 19 22:01:05 openshift-worker-0.kni-qe-4.lab.eng.rdu2.redhat.com configure-ovs.sh[14588]: + nmcli conn up ovs-if-phys1
Jan 19 22:01:05 openshift-worker-0.kni-qe-4.lab.eng.rdu2.redhat.com configure-ovs.sh[26588]: Error: Connection activation failed: No suitable device found for this connection (device eno1np0 not available because profile i
s not compatible with device (mismatching interface name)).
Jan 19 22:01:05 openshift-worker-0.kni-qe-4.lab.eng.rdu2.redhat.com configure-ovs.sh[14588]: + s=4
Jan 19 22:01:05 openshift-worker-0.kni-qe-4.lab.eng.rdu2.redhat.com configure-ovs.sh[14588]: + sleep 5
Jan 19 22:01:10 openshift-worker-0.kni-qe-4.lab.eng.rdu2.redhat.com configure-ovs.sh[14588]: + '[' 4 -eq 0 ']'
Jan 19 22:01:10 openshift-worker-0.kni-qe-4.lab.eng.rdu2.redhat.com configure-ovs.sh[14588]: + false
Jan 19 22:01:10 openshift-worker-0.kni-qe-4.lab.eng.rdu2.redhat.com configure-ovs.sh[14588]: + echo 'ERROR: Cannot bring up connection ovs-if-phys1 after 10 attempts'
Jan 19 22:01:10 openshift-worker-0.kni-qe-4.lab.eng.rdu2.redhat.com configure-ovs.sh[14588]: ERROR: Cannot bring up connection ovs-if-phys1 after 10 attempts
Jan 19 22:01:10 openshift-worker-0.kni-qe-4.lab.eng.rdu2.redhat.com configure-ovs.sh[14588]: + return 4
Jan 19 22:01:10 openshift-worker-0.kni-qe-4.lab.eng.rdu2.redhat.com configure-ovs.sh[14588]: + handle_exit
Jan 19 22:01:10 openshift-worker-0.kni-qe-4.lab.eng.rdu2.redhat.com configure-ovs.sh[14588]: + e=4
Jan 19 22:01:10 openshift-worker-0.kni-qe-4.lab.eng.rdu2.redhat.com configure-ovs.sh[14588]: + '[' 4 -eq 0 ']'
Jan 19 22:01:10 openshift-worker-0.kni-qe-4.lab.eng.rdu2.redhat.com configure-ovs.sh[14588]: + echo 'ERROR: configure-ovs exited with error: 4'
Jan 19 22:01:10 openshift-worker-0.kni-qe-4.lab.eng.rdu2.redhat.com configure-ovs.sh[14588]: ERROR: configure-ovs exited with error: 4

Version-Release number of selected component (if applicable):

4.12.0

How reproducible:

So far 100%

Steps to Reproduce:

1. Deploy dualstack baremetal cluster with bonded interfaces(configured with MC and not NMState within install-config.yaml)
2. Run migration to second interface, part of machine config
      - contents:
          source: data:text/plain;charset=utf-8,bond0.117
        filesystem: root
        mode: 420
        path: /etc/ovnk/extra_bridge
3. Install operators:
* kubevirt-hyperconverged
* sriov-network-operator
* cluster-logging
* elasticsearch-operator
4. Start applying node-tunning profiles
5. During node reboots ovs-configuration service fails

Actual results:

ovs-configuration service fails on some nodes resulting in ovnkube-node-* pods failure
oc get po -n openshift-ovn-kubernetes
NAME                   READY   STATUS             RESTARTS          AGE
ovnkube-master-dvgx7   6/6     Running            8                 16h
ovnkube-master-vs7mp   6/6     Running            6                 16h
ovnkube-master-zrm4c   6/6     Running            6                 16h
ovnkube-node-2g8mb     4/5     CrashLoopBackOff   175 (3m48s ago)   16h
ovnkube-node-bfbcc     4/5     CrashLoopBackOff   176 (64s ago)     16h
ovnkube-node-cj6vf     5/5     Running            5                 16h
ovnkube-node-f92rm     5/5     Running            5                 16h
ovnkube-node-nmjpn     5/5     Running            5                 16h
ovnkube-node-pfv5z     4/5     CrashLoopBackOff   163 (4m53s ago)   15h
ovnkube-node-z5vf9     5/5     Running            10                15h

Expected results:

ovs-configuration service succeeds on all nodes

Additional info:


Description of problem:

After editing a MachineSet on AWS (just changed an annotation) it shows a warning

[~] $ oc -n openshift-machine-api edit machineset.machine.openshift.io/ci-ln-hlf4lft-76ef8-p7rc4-worker-us-west-1b
W1111 16:06:32.385856   88719 warnings.go:70] incorrect GroupVersionKind for AWSMachineProviderConfig object: machine.openshift.io/v1beta1, Kind=AWSMachineProviderConfig
machineset.machine.openshift.io/ci-ln-hlf4lft-76ef8-p7rc4-worker-us-west-1b edited

Version-Release number of selected component (if applicable):

 

How reproducible:

Always

Steps to Reproduce:

1. Add an annotation or label to a machine
2.
3.

Actual results:

There is a warning about incorrect GroupVersionKind for AWSMachineProviderConfig object

Expected results:

No warnings shown

Additional info:

 

This is a clone of issue OCPBUGS-3085. The following is the description of the original issue:

Description of problem:

IPI on BareMetal Dual stack deployment failed and Bootstrap timed out before completion

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-10-25-210451

How reproducible:

Always

Steps to Reproduce:

1. Deploy IPI on BM using Dual stack 
2.
3.

Actual results:

Deployment failed

Expected results:

Should pass

Additional info:

Same deployment works fine on 4.11

This is a clone of issue OCPBUGS-3524. The following is the description of the original issue:

Description of problem:

Install fully private cluster on Azure against 4.12.0-0.nightly-2022-11-10-033725, sa for coreOS image have public access.

$ az storage account list -g jima-azure-11a-f58lp-rg --query "[].[name,allowBlobPublicAccess]" -o tsv
clusterptkpx    True
imageregistryjimaazrsgcc    False

same profile on 4.11.0-0.nightly-2022-11-10-202051, sa for coreos image are not publicly accessible.

$ az storage account list -g jima-azure-11c-kf9hw-rg --query "[].[name,allowBlobPublicAccess]" -o tsv
clusterr8wv9    False
imageregistryjimaaz9btdx    False 

Checked that terraform-provider-azurerm version is different between 4.11 and 4.12.

4.11: v2.98.0

4.12: v3.19.1

In terraform-provider-azurerm v2.98.0, it use property allow_blob_public_access to manage sa public access, the default value is false.

In  terraform-provider-azurerm v3.19.1, property allow_blob_public_access is renamed to allow_nested_items_to_be_public , the default value is true. 

https://github.com/hashicorp/terraform-provider-azurerm/blob/main/CHANGELOG.md#300-march-24-2022

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-11-10-033725

How reproducible:

always on 4.12

Steps to Reproduce:

1. Install fully private cluster on azure against 4.12 payload
2. 
3.

Actual results:

sa for coreos image is publicly accessible

Expected results:

sa for coreos image should not be publicly accessible

Additional info:

only happened on 4.12

 

 

The test results in sippy look really bad on our less common platforms, but still pretty unacceptable even on core clouds. It's reasonably often the only test that fails. We need to decide what to do here, and we're going to need input from the etcd team.

As of Sep 13th:

  • several vsphere and openstack variant combo's fail this test around 24-32% of the time
  • aws, amd64, ovn, upgrade, upgrade-micro, ha - fails 6% of the time
  • aws, amd64, ovn, upgrade, upgrade-minor, ha - fails 4% of the time
  • gcp, amd64, sdn, upgrade, upgrade-minor, ha - fails 8% of the time
  • globally across all jobs fails around 3% of the time.

Even on some major variant combos, a 4-8% failure rate is too high.
On Sep 13 arch call (no etcd present), Damien mentioned this might be an upstream alert that just isn't well suited for OpenShift's use cases, is this the case and it needs tuning?

Has the problem been getting worse?

I believe this link https://datastudio.google.com/s/urkKwmmzvgo indicates that this may be the case for 4.12, AWS and Azure are both getting worse in ways that I don't see if we change the release to 4.11 where it looks consistent. gcp seems fine on 4.12. We do not have data for vsphere for some reason.

This link shows the grpc_methods most commonly involved: https://search.ci.openshift.org/?search=etcdGRPCRequestsSlow+was+at+or+above&maxAge=48h&context=7&type=junit&name=&excludeName=&maxMatches=5&maxBytes=20971520&groupBy=job

At a glance: LeaseGrant, MemberList, Txn, Status, Range.

Broken out of TRT-401
For linking with sippy:
[bz-etcd][invariant] alert/etcdGRPCRequestsSlow should not be at or above info
[sig-arch][bz-etcd][Late] Alerts alert/etcdGRPCRequestsSlow should not be at or above info [Suite:openshift/conformance/parallel]

 

This is a clone of issue OCPBUGS-4986. The following is the description of the original issue:

We should avoid errors like:

$ oc get -o json clusterversion version | jq -r '.status.history[0].acceptedRisks'
Forced through blocking failures: Precondition "ClusterVersionRecommendedUpdate" failed because of "UnknownUpdate": RetrievedUpdates=True (), so the update from 4.13.0-0.okd-2022-12-11-064650 to 4.13.0-0.okd-2022-12-13-052859 is probably neither recommended nor supported.

Instead, tweak the logic from OCPBUGS-2727, and only append the Forced through blocking failures: prefix when the forcing was required.

This is a clone of issue OCPBUGS-5184. The following is the description of the original issue:

Description of problem:

Fail to deploy IPI azure cluster, where set region as westus3, vm type as NV8as_v4. Master node is running from azure portal, but could not ssh login. From serials log, get below error:

[ 3009.547219] amdgpu d1ef:00:00.0: amdgpu: failed to write reg:de0
[ 3011.982399] mlx5_core 6637:00:02.0 enP26167s1: TX timeout detected
[ 3011.987010] mlx5_core 6637:00:02.0 enP26167s1: TX timeout on queue: 0, SQ: 0x170, CQ: 0x84d, SQ Cons: 0x823 SQ Prod: 0x840, usecs since last trans: 2418884000
[ 3011.996946] mlx5_core 6637:00:02.0 enP26167s1: TX timeout on queue: 1, SQ: 0x175, CQ: 0x852, SQ Cons: 0x248c SQ Prod: 0x24a7, usecs since last trans: 2148366000
[ 3012.006980] mlx5_core 6637:00:02.0 enP26167s1: TX timeout on queue: 2, SQ: 0x17a, CQ: 0x857, SQ Cons: 0x44a1 SQ Prod: 0x44c0, usecs since last trans: 2055000000
[ 3012.016936] mlx5_core 6637:00:02.0 enP26167s1: TX timeout on queue: 3, SQ: 0x17f, CQ: 0x85c, SQ Cons: 0x405f SQ Prod: 0x4081, usecs since last trans: 1913890000
[ 3012.026954] mlx5_core 6637:00:02.0 enP26167s1: TX timeout on queue: 4, SQ: 0x184, CQ: 0x861, SQ Cons: 0x39f2 SQ Prod: 0x3a11, usecs since last trans: 2020978000
[ 3012.037208] mlx5_core 6637:00:02.0 enP26167s1: TX timeout on queue: 5, SQ: 0x189, CQ: 0x866, SQ Cons: 0x1784 SQ Prod: 0x17a6, usecs since last trans: 2185513000
[ 3012.047178] mlx5_core 6637:00:02.0 enP26167s1: TX timeout on queue: 6, SQ: 0x18e, CQ: 0x86b, SQ Cons: 0x4c96 SQ Prod: 0x4cb3, usecs since last trans: 2124353000
[ 3012.056893] mlx5_core 6637:00:02.0 enP26167s1: TX timeout on queue: 7, SQ: 0x193, CQ: 0x870, SQ Cons: 0x3bec SQ Prod: 0x3c0f, usecs since last trans: 1855857000
[ 3021.535888] amdgpu d1ef:00:00.0: amdgpu: failed to write reg:e15
[ 3021.545955] BUG: unable to handle kernel paging request at ffffb57b90159000
[ 3021.550864] PGD 100145067 P4D 100145067 PUD 100146067 PMD 0 

From azure doc https://learn.microsoft.com/en-us/azure/virtual-machines/nvv4-series , looks like nvv4 series only supports Window VM.

 

Version-Release number of selected component (if applicable):

4.12 nightly build

How reproducible:

Always

Steps to Reproduce:

1. prepare install-config.yaml, set region as westus3, vm type as NV8as_v4 2. install cluster
3.

Actual results:

installation failed

Expected results:

If nvv4 series is not supported for Linux VM, installer might validate and show the message that such size is not supported.

Additional info:

 

 

 

 

 

Since 4.11 OCP comes with OperatorHub definition which declares a capability
and enables all catalog sources. For OKD we want to enable just community-operators
as users may not have Red Hat pull secret set.
This commit would ensure that OKD version of marketplace operator gets
its own OperatorHub manifest with a custom set of operator catalogs enabled

This is a clone of issue OCPBUGS-3458. The following is the description of the original issue:

Description of problem:

Since way back in 4.8, we've had a banner with To request update recommendations, configure a channel that supports your version when ClusterVersion has RetrievedUpdates=False . But that's only one of several reasons we could be RetrievedUpdates=False. Can we pivot to passing through the ClusterVersion condition message?

Version-Release number of selected component (if applicable):

4.8 and later.

How reproducible:

100%

Steps to Reproduce:

1. Launch a cluster-bot cluster like 4.11.12.
2. Set a channel with oc adm upgrade channel stable-4.11.
3. Scale down the CVO with oc scale --replicas 0 -n openshift-cluster-version deployments/cluster-version-operator.
4. Patch in a RetrievedUpdates condition with:

$ CONDITIONS="$(oc get -o json clusterversion version | jq -c '[.status.conditions[] | if .type == "RetrievedUpdates" then .status = "False" | .message = "Testing" else . end]')"
$ oc patch --subresource status clusterversion version --type json -p "[{\"op\": \"add\", \"path\": \"/status/conditions\", \"value\": ${CONDITIONS}}]"

5. View the admin console at /settings/cluster.

Actual results:

Advice about configuring the channel (but it's already configured).

Expected results:

See the message you patched into the RetrievedUpdates condition.

Description of problem:

`create a project` link is enabled for users who do not have permission to create a project. This issue surfaces itself in the developer sandbox.

Version-Release number of selected component (if applicable):

4.11.5

How reproducible:

 

Steps to Reproduce:

1. log into dev sandbox, or a cluster where the user does not have permission to create a project
2. go directly to URL /topology/all-namespaces

Actual results:

`create a project` link is enabled. Upon clicking the link and submitting the form, the project fails to create; as expected.

Expected results:

`create a project` link should only be available to users with the correct permissions.

Additional info:

The project list pages are not directly available to the user in the UI through the project selector. The user must go directly to the URL.

It's possible to encounter this situation when a user logs in with multiple accounts and returns to a previous url.

 

This is a clone of issue OCPBUGS-3228. The following is the description of the original issue:

While starting a Pipelinerun using UI, and in the process of providing the values on "Start Pipeline" , the IBM Power Customer (Deepak Shetty from IBM) has tried creating credentials under "Advanced options" with "Image Registry Credentials" (Authenticaion type). When the IBM Customer verified the credentials from  Secrets tab (in Workloads) , the secret was found in broken state. Screenshot of the broken secret is attached. 

The issue has been observed on OCP4.8, OCP4.9 and OCP4.10.

Description of problem:

According to https://issues.redhat.com/browse/OCPBUGS-705, thanks Junyun share the test env/result for install part, and we need the fix in vsphere-problem-detector, currently it reports the following missing when using the pre-existing folder and/or resource pool with ReadOnly permission:
  
1. vcenter cluster set ReadOnly permission: 
I0902 10:07:50.324782       1 vsphere_check.go:244] CheckComputeClusterPermissions:jima-permission-q84s8-worker-86gd4 failed: missing privileges for compute cluster workloads: Resource.AssignVMToPool, VApp.AssignResourcePool, VApp.Import, VirtualMachine.Config.AddNewDisk


2. datacenter set ReadOnly permission:
I0902 08:09:19.462001       1 vsphere_check.go:225] CheckAccountPermissions failed: missing privileges for datacenter OCP-DC: Resource.AssignVMToPool, VApp.Import, VirtualMachine.Config.AddExistingDisk, VirtualMachine.Config.AddNewDisk, VirtualMachine.Config.AddRemoveDevice, VirtualMachine.Config.AdvancedConfig, VirtualMachine.Config.Annotation, VirtualMachine.Config.CPUCount, VirtualMachine.Config.DiskExtend, VirtualMachine.Config.DiskLease, VirtualMachine.Config.EditDevice, VirtualMachine.Config.Memory, VirtualMachine.Config.RemoveDisk, VirtualMachine.Config.Rename, VirtualMachine.Config.ResetGuestInfo, VirtualMachine.Config.Resource, VirtualMachine.Config.Settings, VirtualMachine.Config.UpgradeVirtualHardware, VirtualMachine.Interact.GuestControl, VirtualMachine.Interact.PowerOff, VirtualMachine.Interact.PowerOn, VirtualMachine.Interact.Reset, VirtualMachine.Inventory.Create, VirtualMachine.Inventory.CreateFromExisting, VirtualMachine.Inventory.Delete, VirtualMachine.Provisioning.Clone, VirtualMachine.Provisioning.DeployTemplate, VirtualMachine.Provisioning.MarkAsTemplate, Folder.Create, Folder.Delete 

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-09-02-194931

How reproducible:

Always 

Steps to Reproduce:

See Description of problem

Actual results:

The vsphere-problem-detector operator reports privilege missing when using pre-existing folder and/or resource pool with ReadOnly permission

Expected results:

The vsphere-problem-detector operator should not reports privilege missing in that case.

Additional info:

 

This is a clone of issue OCPBUGS-3993. The following is the description of the original issue:

Description of problem:
On Openshift on Openstack CI, we are deploying an OCP cluster with an additional network on the workers in install-config.yaml for integration with Openstack Manila.

compute:
- name: worker
  platform:
    openstack:
      zones: []
      additionalNetworkIDs: ['0eeae16f-bbc7-4e49-90b2-d96419b7c30d']
  replicas: 3

As a result, the egressIP annotation includes two interfaces definition:

$ oc get node ostest-hp9ld-worker-0-gdp5k -o json | jq -r '.metadata.annotations["cloud.network.openshift.io/egress-ipconfig"]' | jq .                                 
[
  {
    "interface": "207beb76-5476-4a05-b412-d0cc53ab00a7",
    "ifaddr": {
      "ipv4": "10.46.44.64/26"
    },
    "capacity": {
      "ip": 8
    }
  },
  {
    "interface": "2baf2232-87f7-4ad5-bd80-b6586de08435",
    "ifaddr": {
      "ipv4": "172.17.5.0/24"
    },
    "capacity": {
      "ip": 10
    }
  }
]

According to Huiran Wang, egressIP only works for primary interface on the node.

Version-Release number of selected component (if applicable):

 4.12.0-0.nightly-2022-11-22-012345
RHOS-16.1-RHEL-8-20220804.n.1

How reproducible:

Always

Steps to Reproduce:

Deploy cluster with additional Network on the workers

Actual results:

It is possible to select an egressIP network for a secondary interface

Expected results:

Only primary subnet can be chosen for egressIP

Additional info:

https://issues.redhat.com/browse/OCPQE-12968

Description of problem:

When deleting a BYOH node in Platform:none, as well as in an Azure IPI cluster the node gets reconciled correctly, however when added back to the cluster it stays in Ready,SchedulingDisabled. When checking the WMCO logs, we can observe the following log:

{"level":"error","ts":"2022-12-14T16:14:31Z","msg":"Reconciler error","controller":"configmap","controllerGroup":"","controllerKind":"ConfigMap","configMap":{"name":"windows-instances","namespace":"openshift-windows-machine-config-operator"},"namespace":"openshift-windows-machine-config-operator","name":"windows-instances","reconcileID":"d66a3142-d52c-43f5-8a42-214ce9c88417","error":"error configuring host with address 10.0.55.21: configuring node network failed: error waiting for k8s.ovn.org/hybrid-overlay-node-subnet node annotation for byoh-2019: timeout waiting for k8s.ovn.org/hybrid-overlay-node-subnet node annotation: timed out waiting for the condition"

And when checking the node's annotation, it is indeed missing:

$ oc get nodes byoh-2019 -o=jsonpath="{.metadata.annotations}"
{"volumes.kubernetes.io/controller-managed-attach-detach":"true","windowsmachineconfig.openshift.io/desired-version":"7.0.0-16f486a","windowsmachineconfig.openshift.io/pub-key-hash":"1df2c166b1c401180523270e9cf6bc2cd2724b9279ea65668a3b95298525a0f5","windowsmachineconfig.openshift.io/username":"wx4EBwMICL6qT+4RY8tgbx4hiRmQdHlwUsHgVGCTVY7S5gG/G5gb/Wzv0JBLhNP9\u003cwmcoMarker\u003ejlmI5ExHPYFrd2Fw6Lxe/6PKEE5/vYAhZ2n1Z2nBIoa1xN1/HEaXhqR2CuXNe7Ez\u003cwmcoMarker\u003eg2Hg+gA=\u003cwmcoMarker\u003e=ubWA"}

Tested in Azure IPI and Platform:None, in both cases the issue got reproduced.

Version-Release number of selected component (if applicable):

$ oc get cm -n openshift-windows-machine-config-operator 
NAME                                   DATA   AGE
kube-root-ca.crt                       1      10h
openshift-service-ca.crt               1      10h
windows-instances                      2      9h
windows-machine-config-operator-lock   0      6h24m
windows-services-7.0.0-16f486a         2      6h23m
$ oc get clusterversion
NAME      VERSION       AVAILABLE   PROGRESSING   SINCE   STATUS
version   4.12.0-rc.4   True        False         6h48m   Cluster version is 4.12.0-rc.4

How reproducible:


Steps to Reproduce:

1. Deploy a OCP 4.11 cluster with WMCO 6.0.0
2. Add one or two byoh nodes to the cluster
3. Upgrade the cluster to OCP 4.12, and later WMCO to 7.0.0
4. Remove one of the byoh nodes using: oc delete node <byoh-node-id>
5. Wait for reconciliation to bring the node back

Actual results:

The deleted node gets re-added but stays in Ready,SchedulingDisabled and the workloads left in Pending state.

Expected results:

The node gets properly added to the cluster and stays in Ready.

Additional info:


https://github.com/openshift/origin/pull/27444 was intended to move the scaling test out of serial to it's own test suite, but it added it to parallel – meaning it's running in all our normal upgrade jobs, causing them to frequently fail with repeating pathological events as well as greatly increasing their run time.

See https://github.com/openshift/origin/pull/27444#discussion_r991296925 for more info

Description of problem:

When creating a pod with an additional network that contains a `spec.config.ipam.exclude` range, any address within the excluded range is still iterated while searching for a suitable IP candidate. As a result, pod creation times out when large exclude ranges are used.

Version-Release number of selected component (if applicable):

 

How reproducible:

with big exclude ranges, 100%

Steps to Reproduce:

1. create network-attachment-definition with a large range:

$ cat <<EOF| oc apply -f -       
apiVersion: k8s.cni.cncf.io/v1                                            
kind: NetworkAttachmentDefinition
metadata:
  name: nad-w-excludes
spec:
  config: |-
    {
      "cniVersion": "0.3.1",
      "name": "macvlan-net",
      "type": "macvlan",
      "master": "ens3",
      "mode": "bridge",
      "ipam": {
         "type": "whereabouts",
         "range": "fd43:01f1:3daa:0baa::/64",
         "exclude": [ "fd43:01f1:3daa:0baa::/100" ],
         "log_file": "/tmp/whereabouts.log",
         "log_level" : "debug"
      }
    }
EOF
2. create a pod with the network attached:

$ cat <<EOF|oc apply -f -
apiVersion: v1
kind: Pod
metadata:
  name: pod-with-exclude-range
  annotations:
    k8s.v1.cni.cncf.io/networks: nad-w-excludes
spec:
  containers:
  - name: pod-1
    image: openshift/hello-openshift
EOF

3. check pod status, event log and whereabouts logs after a while: 

$ oc get pods
NAME                        READY   STATUS              RESTARTS   AGE
pod-with-exclude-range      0/1     ContainerCreating   0          2m23s

$ oc get events
<...>
6m39s       Normal    Scheduled                                    pod/pod-with-exclude-range                   Successfully assigned default/pod-with-exclude-range to <worker-node>
6m37s       Normal    AddedInterface                               pod/pod-with-exclude-range                   Add eth0 [10.129.2.49/23] from openshift-sdn
2m39s       Warning   FailedCreatePodSandBox                       pod/pod-with-exclude-range                   Failed to create pod sandbox: rpc error: code = DeadlineExceeded desc = context deadline exceeded

$ oc debug node/<worker-node> - tail /host/tmp/whereabouts.log
Starting pod/<worker-node>-debug ...
To use host binaries, run `chroot /host`
2022-10-27T14:14:50Z [debug] Finished leader election
2022-10-27T14:14:50Z [debug] IPManagement: {fd43:1f1:3daa:baa::1 ffffffffffffffff0000000000000000} , <nil>
2022-10-27T14:14:59Z [debug] Used defaults from parsed flat file config @ /etc/kubernetes/cni/net.d/whereabouts.d/whereabouts.conf
2022-10-27T14:14:59Z [debug] ADD - IPAM configuration successfully read: {Name:macvlan-net Type:whereabouts Routes:[] Datastore:kubernetes Addresses:[] OmitRanges:[fd43:01f1:3daa:0baa::/80] DNS: {Nameservers:[] Domain: Search:[] Options:[]} Range:fd43:1f1:3daa:baa::/64 RangeStart:fd43:1f1:3daa:baa:: RangeEnd:<nil> GatewayStr: EtcdHost: EtcdUsername: EtcdPassword:********* EtcdKeyFile: EtcdCertFile: EtcdCACertFile: LeaderLeaseDuration:1500 LeaderRenewDeadline:1000 LeaderRetryPeriod:500 LogFile:/tmp/whereabouts.log LogLevel:debug OverlappingRanges:true SleepForRace:0 Gateway:<nil> Kubernetes: {KubeConfigPath:/etc/kubernetes/cni/net.d/whereabouts.d/whereabouts.kubeconfig K8sAPIRoot:} ConfigurationPath:PodName:pod-with-exclude-range PodNamespace:default} 
2022-10-27T14:14:59Z [debug] Beginning IPAM for ContainerID: f4ffd0e07d6c1a2b6ffb0fa29910c795258792bb1a1710ff66f6b48fab37af82
2022-10-27T14:14:59Z [debug] Started leader election
2022-10-27T14:14:59Z [debug] OnStartedLeading() called
2022-10-27T14:14:59Z [debug] Elected as leader, do processing
2022-10-27T14:14:59Z [debug] IPManagement - mode: 0 / containerID:f4ffd0e07d6c1a2b6ffb0fa29910c795258792bb1a1710ff66f6b48fab37af82 / podRef: default/pod-with-exclude-range
2022-10-27T14:14:59Z [debug] IterateForAssignment input >> ip: fd43:1f1:3daa:baa:: | ipnet: {fd43:1f1:3daa:baa:: ffffffffffffffff0000000000000000} | first IP: fd43:1f1:3daa:baa::1 | last IP: fd43:1f1:3daa:baa:ffff:ffff:ffff:ffff

Actual results:

Failed to create pod sandbox: rpc error: code = DeadlineExceeded desc = context deadline exceeded

Expected results:

additional network gets attached to the pod

Additional info:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As a developer, I would like to remove the random terraform provider because it is essentially unnecessary and would improve our build process.

 

The random Terraform provider is used in Azure & Azure Stack to create a random string. This could easily be done in go code and passed in as a variable. 

Removing an extra provider would decrease our build time and improve our build stability, which is often failing due to timeouts. 

 

The random string is used here in Azure (and similarly in Azure Stack):

https://github.com/openshift/installer/blob/master/data/data/azure/vnet/main.tf#L23-L27

 

One approach would be to generate the string in tfvars and pass it in as a terraform variable.