Back to index

4.12.8

Jump to: Complete Features | Incomplete Features | Complete Epics | Incomplete Epics | Other Complete | Other Incomplete |

Changes from 4.11.59

Note: this page shows the Feature-Based Change Log for a release

Complete Features

These features were completed when this image was assembled

1. Proposed title of this feature request
Add runbook_url to alerts in the OCP UI

2. What is the nature and description of the request?
If an alert includes a runbook_url label, then it should appear in the UI for the alert as a link.

3. Why does the customer need this? (List the business requirements here)
Customer can easily reach the alert runbook and be able to address their issues.

4. List any affected packages or components.

Epic Goal

  • Make it possible to disable the console operator at install time, while still having a supported+upgradeable cluster.

Why is this important?

  • It's possible to disable console itself using spec.managementState in the console operator config. There is no way to remove the console operator, though. For clusters where an admin wants to completely remove console, we should give the option to disable the console operator as well.

Scenarios

  1. I'm an administrator who wants to minimize my OpenShift cluster footprint and who does not want the console installed on my cluster

Acceptance Criteria

  • It is possible at install time to opt-out of having the console operator installed. Once the cluster comes up, the console operator is not running.

Dependencies (internal and external)

  1. Composable cluster installation

Previous Work (Optional):

  1. https://docs.google.com/document/d/1srswUYYHIbKT5PAC5ZuVos9T2rBnf7k0F1WV2zKUTrA/edit#heading=h.mduog8qznwz
  2. https://docs.google.com/presentation/d/1U2zYAyrNGBooGBuyQME8Xn905RvOPbVv3XFw3stddZw/edit#slide=id.g10555cc0639_0_7

Open questions::

  1. The console operator manages the downloads deployment as well. Do we disable the downloads deployment? Long term we want to move to CLI manager: https://github.com/openshift/enhancements/blob/6ae78842d4a87593c63274e02ac7a33cc7f296c3/enhancements/oc/cli-manager.md

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

In the console-operator repo we need to add `capability.openshift.io/console` annotation to all the manifests that the operator either contains creates on the fly.

 

Manifests are currently present in /bindata and /manifest directories.

 

Here is example of the insights-operator change.

Here is the overall enhancement doc.

 

Feature Overview
Provide CSI drivers to replace all the intree cloud provider drivers we currently have. These drivers will probably be released as tech preview versions first before being promoted to GA.

Goals

  • Framework for rapid creation of CSI drivers for our cloud providers
  • CSI driver for AWS EBS
  • CSI driver for AWS EFS
  • CSI driver for GCP
  • CSI driver for Azure
  • CSI driver for VMware vSphere
  • CSI Driver for Azure Stack
  • CSI Driver for Alicloud
  • CSI Driver for IBM Cloud

Requirements

Requirement Notes isMvp?
Framework for CSI driver  TBD Yes
Drivers should be available to install both in disconnected and connected mode   Yes
Drivers should upgrade from release to release without any impact   Yes
Drivers should be installable via CVO (when in-tree plugin exists)    

Out of Scope

This work will only cover the drivers themselves, it will not include

  • enhancements to the CSI API framework
  • the migration to said drivers from the the intree drivers
  • work for non-cloud provider storage drivers (FC-SAN, iSCSI) being converted to CSI drivers

Background, and strategic fit
In a future Kubernetes release (currently 1.21) intree cloud provider drivers will be deprecated and replaced with CSI equivalents, we need the drivers created so that we continue to support the ecosystems in an appropriate way.

Assumptions

  • Storage SIG won't move out the changeover to a later Kubernetes release

Customer Considerations
Customers will need to be able to use the storage they want.

Documentation Considerations

  • Target audience: cluster admins
  • Updated content: update storage docs to show how to use these drivers (also better expose the capabilities)

This Epic is to track the GA of this feature

Goal

  • Make available the Google Cloud File Service via a CSI driver, it is desirable that this implementation has dynamic provisioning
  • Without GCP filestore support, we are limited to block / RWO only (GCP PD 4.8 GA)
  • Align with what we support on other major public cloud providers.

Why is this important?

  • There is a know storage gap with google cloud where only block is supported
  • More customers deploying on GCE and asking for file / RWX storage.

Scenarios

  1. Install the CSI driver
  2. Remove the CSI Driver
  3. Dynamically provision a CSI Google File PV*
  4. Utilise a Google File PV
  5. Assess optional features such as resize & snapshot

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Customers::

  • Telefonica Spain
  • Deutsche Bank

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

As an OCP user, I want images for GCP Filestore CSI Driver and Operator, so that I can install them on my cluster and utilize GCP Filestore shares.

Epic Goal

  • Enable the migration from a storage intree driver to a CSI based driver with minimal impact to the end user, applications and cluster
  • These migrations would include, but are not limited to:
    • CSI driver for AWS EBS
    • CSI driver for GCP
    • CSI driver for Azure (file and disk)
    • CSI driver for VMware vSphere

Why is this important?

  • OpenShift needs to maintain it's ability to enable PVCs and PVs of the main storage types
  • CSI Migration is getting close to GA, we need to have the feature fully tested and enabled in OpenShift
  • Upstream intree drivers are being deprecated to make way for the CSI drivers prior to intree driver removal

Scenarios

  1. User initiated move to from intree to CSI driver
  2. Upgrade initiated move from intree to CSI driver
  3. Upgrade from EUS to EUS

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

This Epic tracks the GA of this feature

Epic Goal

Why is this important?

  • OpenShift needs to maintain it's ability to enable PVCs and PVs of the main storage types
  • CSI Migration is getting close to GA, we need to have the feature fully tested and enabled in OpenShift
  • Upstream intree drivers are being deprecated to make way for the CSI drivers prior to intree driver removal

Scenarios

  1. User initiated move to from intree to CSI driver
  2. Upgrade initiated move from intree to CSI driver
  3. Upgrade from EUS to EUS

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

On new installations, we should make the StorageClass created by the CSI operator the default one. 

However, we shouldn't do that on an upgrade scenario. The main reason is that users might have set  a different quota on the CSI driver Storage Class.

Exit criteria:

  • New clusters get the CSI Storage Class as the default one.
  • Existing clusters don't get their default Storage Classes changed.
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

On new installations, we should make the StorageClass created by the CSI operator the default one. 

However, we shouldn't do that on an upgrade scenario. The main reason is that users might have set  a different quota on the CSI driver Storage Class.

Exit criteria:

  • New clusters get the CSI Storage Class as the default one.
  • Existing clusters don't get their default Storage Classes changed.

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Rebase OpenShift components to k8s v1.24

Why is this important?

  • Rebasing ensures components work with the upcoming release of Kubernetes
  • Address tech debt related to upstream deprecations and removals.

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. k8s 1.24 release

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Feature Overview

  • As an infrastructure owner, I want a repeatable method to quickly deploy the initial OpenShift cluster.
  • As an infrastructure owner, I want to install the first (management, hub, “cluster 0”) cluster to manage other (standalone, hub, spoke, hub of hubs) clusters.

Goals

  • Enable customers and partners to successfully deploy a single “first” cluster in disconnected, on-premises settings

Requirements

4.11 MVP Requirements

  • Customers and partners needs to be able to download the installer
  • Enable customers and partners to deploy a single “first” cluster (cluster 0) using single node, compact, or highly available topologies in disconnected, on-premises settings
  • Installer must support advanced network settings such as static IP assignments, VLANs and NIC bonding for on-premises metal use cases, as well as DHCP and PXE provisioning environments.
  • Installer needs to support automation, including integration with third-party deployment tools, as well as user-driven deployments.
  • In the MVP automation has higher priority than interactive, user-driven deployments.
  • For bare metal deployments, we cannot assume that users will provide us the credentials to manage hosts via their BMCs.
  • Installer should prioritize support for platforms None, baremetal, and VMware.
  • The installer will focus on a single version of OpenShift, and a different build artifact will be produced for each different version.
  • The installer must not depend on a connected registry; however, the installer can optionally use a previously mirrored registry within the disconnected environment.

Use Cases

  • As a Telco partner engineer (Site Engineer, Specialist, Field Engineer), I want to deploy an OpenShift cluster in production with limited or no additional hardware and don’t intend to deploy more OpenShift clusters [Isolated edge experience].
  • As a Enterprise infrastructure owner, I want to manage the lifecycle of multiple clusters in 1 or more sites by first installing the first  (management, hub, “cluster 0”) cluster to manage other (standalone, hub, spoke, hub of hubs) clusters [Cluster before your cluster].
  • As a Partner, I want to package OpenShift for large scale and/or distributed topology with my own software and/or hardware solution.
  • As a large enterprise customer or Service Provider, I want to install a “HyperShift Tugboat” OpenShift cluster in order to offer a hosted OpenShift control plane at scale to my consumers (DevOps Engineers, tenants) that allows for fleet-level provisioning for low CAPEX and OPEX, much like AKS or GKE [Hypershift].
  • As a new, novice to intermediate user (Enterprise Admin/Consumer, Telco Partner integrator, RH Solution Architect), I want to quickly deploy a small OpenShift cluster for Poc/Demo/Research purposes.

Questions to answer…

  •  

Out of Scope

Out of scope use cases (that are part of the Kubeframe/factory project):

  • As a Partner (OEMs, ISVs), I want to install and pre-configure OpenShift with my hardware/software in my disconnected factory, while allowing further (minimal) reconfiguration of a subset of capabilities later at a different site by different set of users (end customer) [Embedded OpenShift].
  • As an Infrastructure Admin at an Enterprise customer with multiple remote sites, I want to pre-provision OpenShift centrally prior to shipping and activating the clusters in remote sites.

Background, and strategic fit

  • This Section: What does the person writing code, testing, documenting need to know? What context can be provided to frame this feature.

Assumptions

  1. The user has only access to the target nodes that will form the cluster and will boot them with the image presented locally via a USB stick. This scenario is common in sites with restricted access such as government infra where only users with security clearance can interact with the installation, where software is allowed to enter in the premises (in a USB, DVD, SD card, etc.) but never allowed to come back out. Users can't enter supporting devices such as laptops or phones.
  2. The user has access to the target nodes remotely to their BMCs (e.g. iDrac, iLo) and can map an image as virtual media from their computer. This scenario is common in data centers where the customer provides network access to the BMCs of the target nodes.
  3. We cannot assume that we will have access to a computer to run an installer or installer helper software.

Customer Considerations

  • ...

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

 

References

 

 

Epic Goal

As a OpenShift infrastructure owner, I want to deploy OpenShift clusters with dual-stack IPv4/IPv6

As a OpenShift infrastructure owner, I want to deploy OpenShift clusters with single-stack IPv6

Why is this important?

IPv6 and dual-stack clusters are requested often by customers, especially from Telco customers. Working with dual-stack clusters is a requirement for many but also a transition into a single-stack IPv6 clusters, which for some of our users is the final destination.

Acceptance Criteria

  • Agent-based installer can deploy IPv6 clusters
  • Agent-based installer can deploy dual-stack clusters
  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Previous Work

Karim's work proving how agent-based can deploy IPv6: IPv6 deploy with agent based installer]

Done Checklist * CI - CI is running, tests are automated and merged.

  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>|

For dual-stack installations the agent-cluster-install.yaml must have both an IPv4 and IPv6 subnet in the networkking.MachineNetwork or assisted-service will throw an error. This field is in InstallConfig but it must be added to agent-cluster-install in its Generate().

For IPv4 and IPv6 installs, setting up the MachineNetwork is not needed but it also does not cause problems if its set, so it should be fine to set it all times.

Set the ClusterDeployment CRD to deploy OpenShift in FIPS mode and make sure that after deployment the cluster is set in that mode

In order to install FIPS compliant clusters, we need to make sure that installconfig + agentoconfig based deployments take into account the FIPS config in installconfig.

This task is about passing the config to agentclusterinstall so it makes it into the iso. Once there, AGENT-374 will give it to assisted service

Epic Goal

As an OpenShift infrastructure owner, I want to deploy a cluster zero with RHACM or MCE and have the required components installed when the installation is completed

Why is this important?

BILLI makes it easier to deploy a cluster zero. BILLI users know at installation time what the purpose of their cluster is when they plan the installation. Day-2 steps are necessary to install operators and users, especially when automating installations, want to finish the installation flow when their required components are installed.

Acceptance Criteria

  • A user can provide MCE manifests and have it installed without additional manual steps after the installation is completed
  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story:

As a customer, I want to be able to:

  • Install MCE with the agent-installer

so that I can achieve

  • create an MCE hub with my openshift install

Acceptance Criteria:

Description of criteria:

  • Upstream documentation including examples of the extra manifests needed
  • Unit tests that include MCE extra manifests
  • Ability to install MCE using agent-installer is tested
  • Point 3

(optional) Out of Scope:

We are only allowing the user to provide extra manifests to install MCE at this time. We are not adding an option to "install mce" on the command line (or UI)

Engineering Details:

This requires/does not require a design proposal.
This requires/does not require a feature gate.

User Story:

As a customer, I want to be able to:

  • Install MCE with the agent-installer

so that I can achieve

  • create an MCE hub with my openshift install

Acceptance Criteria:

Description of criteria:

  • Upstream documentation including examples of the extra manifests needed
  • Unit tests that include MCE extra manifests
  • Ability to install MCE using agent-installer is tested
  • Point 3

(optional) Out of Scope:

We are only allowing the user to provide extra manifests to install MCE at this time. We are not adding an option to "install mce" on the command line (or UI)

Engineering Details:

This requires/does not require a design proposal.
This requires/does not require a feature gate.

Epic Goal

  • Rebase cluster autoscaler on top of Kubernetes 1.25

Why is this important?

  • Need to pick up latest upstream changes

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story

As a user I would like to see all the events that the autoscaler creates, even duplicates. Having the CAO set this flag will allow me to continue to see these events.

Background

We have carried a patch for the autoscaler that would enable the duplication of events. This patch can now be dropped because the upstream added a flag for this behavior in https://github.com/kubernetes/autoscaler/pull/4921

Steps

  • add the --record-duplicated-events flag to all autoscaler deployments from the CAO

Stakeholders

  • openshift eng

Definition of Done

  • autoscaler continues to work as expected and produces events for everything
  • Docs
  • this does not require documentation as it preserves existing behavior and provides no interface for user interaction
  • Testing
  • current tests should continue to pass

Feature Overview

Add GA support for deploying OpenShift to IBM Public Cloud

Goals

Complete the existing gaps to make OpenShift on IBM Cloud VPC (Next Gen2) General Available

Requirements

Optional requirements

  • OpenShift can be deployed using Mint mode and STS for cloud provider credentials (future release, tbd)
  • OpenShift can be deployed in disconnected mode https://issues.redhat.com/browse/SPLAT-737)
  • OpenShift on IBM Cloud supports User Provisioned Infrastructure (UPI) deployment method (future release, 4.14?)

Epic Goal

  • Enable installation of private clusters on IBM Cloud. This epic will track associated work.

Why is this important?

  • This is required MVP functionality to achieve GA.

Scenarios

  1. Install a private cluster on IBM Cloud.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Background and Goal

Currently in OpenShift we do not support distributing hotfix packages to cluster nodes. In time-sensitive situations, a RHEL hotfix package can be the quickest route to resolving an issue. 

Acceptance Criteria

  1. Under guidance from Red Hat CEE, customers can deploy RHEL hotfix packages to MachineConfigPools.
  2. Customers can easily remove the hotfix when the underlying RHCOS image incorporates the fix.

Before we ship OCP CoreOS layering in https://issues.redhat.com/browse/MCO-165 we need to switch the format of what is currently `machine-os-content` to be the new base image.

The overall plan is:

  • Publish the new base image as `rhel-coreos-8` in the release image
  • Also publish the new extensions container (https://github.com/openshift/os/pull/763) as `rhel-coreos-8-extensions`
  • Teach the MCO to use this without also involving layering/build controller
  • Delete old `machine-os-content`

As a OCP CoreOS layering developer, having telemetry data about number of cluster using osImageURL will help understand how broadly this feature is getting used and improve accordingly.

Acceptance Criteria:

  • Cluster using Custom osImageURL is available via telemetry

After https://github.com/openshift/os/pull/763 is in the release image, teach the MCO how to use it. This is basically:

  • Schedule the extensions container as a kubernetes service (just serves a yum repo via http)
  • Change the MCD to write a file into `/etc/yum.repos.d/machine-config-extensions.repo` that consumes it instead of what it does now in pulling RPMs from the mounted container filesystem

 

Why?

  • Decouple control and data plane. 
    • Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.
  • Improve security
    • Shift credentials out of cluster that support the operation of core platform vs workload
  • Improve cost
    • Allow a user to toggle what they don’t need.
    • Ensure a smooth path to scale to 0 workers and upgrade with 0 workers.

 

Assumption

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure , and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

 

 

Doc: https://docs.google.com/document/d/1sXCaRt3PE0iFmq7ei0Yb1svqzY9bygR5IprjgioRkjc/edit 

Overview 

Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.

Assumption

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure, and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

DoD 

Run cluster-storage-operator (CSO) + AWS EBS CSI driver operator + AWS EBS CSI driver control-plane Pods in the management cluster, run the driver DaemonSet in the hosted cluster.

More information here: https://docs.google.com/document/d/1sXCaRt3PE0iFmq7ei0Yb1svqzY9bygR5IprjgioRkjc/edit 

 

As HyperShift Cluster Instance Admin, I want to run cluster-storage-operator (CSO) in the management cluster, so the guest cluster runs just my applications.

  • Add a new cmdline option for the guest cluster kubeconfig file location
  • Parse both kubeconfigs:
    • One from projected service account, which leads to the management cluster.
    • Second from the new cmdline option introduced above. This one leads to the guest cluster.
  • Tag manifests of objects that should not be deployed by CVO in HyperShift
  • Only on HyperShift:
    • When interacting with Kubernetes API, carefully choose the right kubeconfig to watch / create / update objects in the right cluster.
    • Replace namespaces in all Deployments and other objects that are created in the management cluster. They must be created in the same namespace as the operator.
    • Pass only the guest kubeconfig to the operands (AWS EBS CSI driver operator).

Exit criteria:

  • CSO and AWS EBS CSI driver operator runs in the management cluster in HyperShift
  • Storage works in the guest cluster.
  • No regressions in standalone OCP.

As HyperShift Cluster Instance Admin, I want to run AWS EBS CSI driver operator + control plane of the CSI driver in the management cluster, so the guest cluster runs just my applications.

  • Add a new cmdline option for the guest cluster kubeconfig file location
  • Parse both kubeconfigs:
    • One from projected service account, which leads to the management cluster.
    • Second from the new cmdline option introduced above. This one leads to the guest cluster.
  • Only on HyperShift:
    • When interacting with Kubernetes API, carefully choose the right kubeconfig to watch / create / update objects in the right cluster.
    • Replace namespaces in all Deployments and other objects that are created in the management cluster. They must be created in the same namespace as the operator.
  •  
  •  
    • Pass only the guest kubeconfig to the operand (control-plane Deployment of the CSI driver).

Exit criteria:

  • Control plane Deployment of AWS EBS CSI driver runs in the management cluster in HyperShift.
  • Storage works in the guest cluster.
  • No regressions in standalone OCP.

As OCP support engineer I want the same guest cluster storage-related objects in output of "hypershift dump cluster --dump-guest-cluster" as in "oc adm must-gather ", so I can debug storage issues easily.

 

must-gather collects: storageclasses persistentvolumes volumeattachments csidrivers csinodes volumesnapshotclasses volumesnapshotcontents

hypershift collects none of this, the relevant code is here: https://github.com/openshift/hypershift/blob/bcfade6676f3c344b48144de9e7a36f9b40d3330/cmd/cluster/core/dump.go#L276

 

Exit criteria:

  • verify that hypershift dump cluster --dump-guest-cluster has storage objects from the guest cluster.

Overview 

Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.

Assumption

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure, and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

DoD 

cluster-snapshot-controller-operator is running on the CP. 

More information here: https://docs.google.com/document/d/1sXCaRt3PE0iFmq7ei0Yb1svqzY9bygR5IprjgioRkjc/edit 

As OpenShift developer I want cluster-csi-snapshot-controller-operator to use existing controllers in library-go, so I don’t need to maintain yet another code that does the same thing as library-go.

  • Check and remove manifests/03_configmap.yaml, it does not seem to be useful.
  • Check and remove manifests/03_service.yaml, it does not seem to be useful (at least now).
  • Use DeploymentController from library-go to sync Deployments.
  • Get rid of common/ package? It does not seem to be useful.
  • Use StaticResourceController for static content, including the snapshot CRDs.

Note: if this refactoring introduces any new conditions, we must make sure that 4.11 snapshot controller clears them to support downgrade! This will need 4.11 BZ + z-stream update!

Similarly, if some conditions become obsolete / not managed by any controller, they must be cleared by 4.12 operator.

Exit criteria:

  • The operator code is smaller.
  • No regressions in standalone OCP.
  • Upgrade/downgrade from/to standalone OCP 4.11 works.

As HyperShift Cluster Instance Admin, I want to run cluster-csi-snapshot-controller-operator in the management cluster, so the guest cluster runs just my applications.

  • Add a new cmdline option for the guest cluster kubeconfig file location
  • Parse both kubeconfigs:
    • One from projected service account, which leads to the management cluster.
    • Second from the new cmdline option introduced above. This one leads to the guest cluster.
  • Move creation of manifests/08_webhook_service.yaml from CVO to the operator - it needs to be created in the management cluster.
  • Tag manifests of objects that should not be deployed by CVO in HyperShift by
  • Only on HyperShift:
    • When interacting with Kubernetes API, carefully choose the right kubeconfig to watch / create / update objects in the right cluster.
    • Replace namespaces in all Deployments and other objects that are created in the management cluster. They must be created in the same namespace as the operator.
    • Don’t create operand’s PodDisruptionBudget?
    • Update ValidationWebhookConfiguration to point directly to URL exposed by manifests/08_webhook_service.yaml instead of a Service. The Service is not available in the guest cluster.
    • Pass only the guest kubeconfig to the operands (both the webhook and csi-snapshot-controller).
    • Update unit tests to handle two kube clients.

Exit criteria:

  • cluster-csi-snapshot-controller-operator runs in the management cluster in HyperShift
  • csi-snapshot-controller runs in the management cluster in HyperShift
  • It is possible to take & restore volume snapshot in the guest cluster.
  • No regressions in standalone OCP.

Epic Goal

  • To improve debug-ability of ovn-k in hypershift
  • To verify the stability of of ovn-k in hypershift
  • To introduce a EgressIP reach-ability check that will work in hypershift

Why is this important?

  • ovn-k is supposed to be GA in 4.12. We need to make sure it is stable, we know the limitations and we are able to debug it similar to the self hosted cluster.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated

Dependencies (internal and external)

  1. This will need consultation with the people working on HyperShift

Previous Work (Optional):

  1. https://issues.redhat.com/browse/SDN-2589

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

Incomplete Features

When this image was assembled, these features were not yet completed. Therefore, only the Jira Cards included here are part of this release

Epic Goal

  • Enabling integration of single hub cluster to install both ARM and x86 spoke clusters
  • Enabling support for heterogeneous OCP clusters
  • document requirements deployment flows
  • support in disconnected environment

Why is this important?

  • clients request

Scenarios

  1. Users manage both ARM and x86 machines, we should not require to have two different hub clusters
  2. Users manage a mixed architecture clusters without requirement of all the nodes to be of the same architecture

Acceptance Criteria

  • Process is well documented
  • we are able to install in a disconnected environment

We have a set of images

  • quay.io/edge-infrastructure/assisted-installer-agent:latest
  • quay.io/edge-infrastructure/assisted-installer-controller:latest
  • quay.io/edge-infrastructure/assisted-installer:latest

that should become multiarch images. This should be done both in upstream and downstream.

As a reference, we have built internally those images as multiarch and made them available as

  • registry.redhat.io/rhai-tech-preview/assisted-installer-agent-rhel8:latest
  • registry.redhat.io/rhai-tech-preview/assisted-installer-reporter-rhel8:latest
  • registry.redhat.io/rhai-tech-preview/assisted-installer-rhel8:latest

They can be consumed by the Assisted Serivce pod via the following env

    - name: AGENT_DOCKER_IMAGE
      value: registry.redhat.io/rhai-tech-preview/assisted-installer-agent-rhel8:latest
    - name: CONTROLLER_IMAGE
      value: registry.redhat.io/rhai-tech-preview/assisted-installer-reporter-rhel8:latest
    - name: INSTALLER_IMAGE
      value: registry.redhat.io/rhai-tech-preview/assisted-installer-rhel8:latest

OLM would have to support a mechanism like podAffinity which allows multiple architecture values to be specified which enables it to pin operators to the matching architecture worker nodes

Ref: https://github.com/openshift/enhancements/pull/1014

 

Cut a new release of the OLM API and update OLM API dependency version (go.mod) in OLM package; then
Bring the upstream changes from OLM-2674 to the downstream olm repo.

A/C:

 - New OLM API version release
 - OLM API dependency updated in OLM Project
 - OLM Subscription API changes  downstreamed
 - OLM Controller changes  downstreamed
 - Changes manually tested on Cluster Bot

Feature Overview

We drive OpenShift cross-market customer success and new customer adoption with constant improvements and feature additions to the existing capabilities of our OpenShift Core Networking (SDN and Network Edge). This feature captures that natural progression of the product.

Goals

  • Feature enhancements (performance, scale, configuration, UX, ...)
  • Modernization (incorporation and productization of new technologies)

Requirements

  • Core Networking Stability
  • Core Networking Performance and Scale
  • Core Neworking Extensibility (Multus CNIs)
  • Core Networking UX (Observability)
  • Core Networking Security and Compliance

In Scope

  • Network Edge (ingress, DNS, LB)
  • SDN (CNI plugins, openshift-sdn, OVN, network policy, egressIP, egress Router, ...)
  • Networking Observability

Out of Scope

There are definitely grey areas, but in general:

  • CNV
  • Service Mesh
  • CNF

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

Goal: Provide queryable metrics and telemetry for cluster routes and sharding in an OpenShift cluster.

Problem: Today we test OpenShift performance and scale with best-guess or anecdotal evidence for the number of routes that our customers use. Best practices for a large number of routes in a cluster is to shard, however we have no visibility with regard to if and how customers are using sharding.

Why is this important? These metrics will inform our performance and scale testing, documented cluster limits, and how customers are using sharding for best practice deployments.

Dependencies (internal and external):

Prioritized epics + deliverables (in scope / not in scope):

Not in scope:

Estimate (XS, S, M, L, XL, XXL):

Previous Work:

Open questions:

Acceptance criteria:

Epic Done Checklist:

  • CI - CI Job & Automated tests: <link to CI Job & automated tests>
  • Release Enablement: <link to Feature Enablement Presentation> 
  • DEV - Upstream code and tests merged: <link to meaningful PR orf GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>
  • Notes for Done Checklist
    • Adding links to the above checklist with multiple teams contributing; select a meaningful reference for this Epic.
    • Checklist added to each Epic in the description, to be filled out as phases are completed - tracking progress towards “Done” for the Epic.

Description:

As described in the Design Doc, the following information is needed to be exported from Cluster Ingress Operator:

  • Number of routes/shard

Design 2 will be implemented as part of this story.

 

Acceptance Criteria:

  • Support for exporting the above mentioned metrics by Cluster Ingress Operator

Description:

As described in the Metrics to be sent via telemetry section of the Design Doc, the following metrics is needed to be sent from OpenShift cluster to Red Hat premises:

  • Minimum Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:min  : min(route_metrics_controller_routes_per_shard)
    • Gives the minimum value of Routes per Shard.
  • Maximum Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:max  : max(route_metrics_controller_routes_per_shard)
    • Gives the maximum value of Routes per Shard.
  • Average Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:avg  : avg(route_metrics_controller_routes_per_shard)
    • Gives the average value of Routes per Shard.
  • Median Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:median  : quantile(0.5, route_metrics_controller_routes_per_shard)
    • Gives the median value of Routes per Shard.
  • Number of Routes summed by TLS Termination type
    • Recording Rule – cluster:openshift_route_info:tls_termination:sum : sum (openshift_route_info) by (tls_termination)
    • Gives the number of Routes for each tls_termination value. The possible values for tls_termination are edge, passthrough and reencrypt. 

The metrics should be allowlisted on the cluster side.

The steps described in Sending metrics via telemetry are needed to be followed. Specifically step 5.

Depends on CFE-478.

Acceptance Criteria:

  • Support for sending the above mentioned metrics from OpenShift clusters to the Red Hat premises by allowlisting metrics on the cluster side

This is a epic bucket for all activities surrounding the creation of declarative approach to release and maintain OLM catalogs.

Epic Goal

  • Allow Operator Authors to easily change the layout of the update graph in a single location so they can version/maintain/release it via git and have more approachable controls about graph vertices than today's replaces, skips and/or skipRange taxonomy
  • Allow Operators authors to have control over channel and bundle channel membership

Why is this important?

  • The imperative catalog maintenance approach so far with opm is being moved to a declarative format (OLM-2127 and OLM-1780) moving away from bundle-level controls but the update graph properties are still attached to a bundle
  • We've received feedback from the RHT internal developer community that maintaining and reasoning about the graph in the context of a single channel is still too hard, even with visualization tools
  • making the update graph easily changeable is important to deliver on some of the promises of declarative index configuration
  • The current interface for declarative index configuration still relies on skips, skipRange and replaces to shape the graph on a per-bundle level - this is too complex at a certain point with a lot of bundles in channels, we need to something at the package level

Scenarios

  1. An Operator author wants to release a new version replacing the latest version published previously
  2. After additional post-GA testing an Operator author wants to establish a new update path to an existing released version from an older, released version
  3. After finding a bug post-GA an Operator author wants to temporarily remove a known to be problematic update path
  4. An automated system wants to push a bundle inbetween an existing update path as a result of an Operator (base) image rebuild (Freshmaker use case)
  5. A user wants to take a declarative graph definition and turn it into a graphical image for visually ensuring the graph looks like they want
  6. An Operator author wants to promote a certain bundle to an additional / different channel to indicate progress in maturity of the operator.

Acceptance Criteria

  • The declarative format has to be user readable and terse enough to make quick modifications
  • The declarative format should be machine writeable (Freshmaker)
  • The update graph is declared and modified in a text based format aligned with the declarative config
  • it has to be possible to add / removes edges at the leave of the graph (releasing/unpublishing a new version)
  • it has to be possible to add/remove new vertices between existing edges (releasing/retracting a new update path)
  • it has to be possible to add/remove new edges in between existing vertices (releasing/unpublishing a version inbetween, freshmaker user case)
  • it has to be possible to change the channel member ship of a bundle after it's published (channel promotion)
  • CI - MUST be running successfully with tests automated
  • it has to be possible to add additional metadata later to implement OLM-2087 and OLM-259 if required

Dependencies (internal and external)

  1. Declarative Index Config (OLM-2127)

Previous Work:

  1. Declarative Index Config (OLM-1780)

Related work

Open questions:

  1. What other manipulation scenarios are required?
    1. Answer: deprecation of content in the spirit of OLM-2087
    2. Answer: cross-channel update hints as described in OLM-2059 if that implementation requires it

 

When working on this Epic, it's important to keep in mind this other potentially related Epic: https://issues.redhat.com/browse/OLM-2276

 

Jira Description

As an OPM maintainer, I want to downstream the PR for (OCP 4.12 ) and backport it to OCP 4.11 so that IIB will NOT be impacted by the changes when it upgrades the OPM version to use the next/future opm upstream release (v1.25.0).

Summary / Background

IIB(the downstream service that manages the indexes) uses the upstream version and if they bump the OPM version to the next/future (v1.25.0) release with this change before having the downstream images updated then: the process to manage the indexes downstream will face issues and it will impact the distributions. 

Acceptance Criteria

  • The changes in the PR are available for the releases which uses FBC -> OCP 4.11, 4.12

Definition of Ready

  • PRs merged into downstream OCP repos branches 4.11/4.12

Definition of Done

  • We checked that the downstream images are with the changes applied (i.e.: we can try to verify in the same way that we checked if the changes were in the downstream for the fix OLM-2639 )

enhance the veneer rendering to be able to read the input veneer data from stdin, via a pipe, in a manner similar to https://dev.to/napicella/linux-pipes-in-golang-2e8j

then the command could be used in a manner similar to many k8s examples like

```shell
opm alpha render-veneer semver -o yaml < infile > outfile
```

Upstream issue link: https://github.com/operator-framework/operator-registry/issues/1011

We need to continue to maintain specific areas within storage, this is to capture that effort and track it across releases.

Goals

  • To allow OCP users and cluster admins to detect problems early and with as little interaction with Red Hat as possible.
  • When Red Hat is involved, make sure we have all the information we need from the customer, i.e. in metrics / telemetry / must-gather.
  • Reduce storage test flakiness so we can spot real bugs in our CI.

Requirements

Requirement Notes isMvp?
Telemetry   No
Certification   No
API metrics   No
     

Out of Scope

n/a

Background, and strategic fit
With the expected scale of our customer base, we want to keep load of customer tickets / BZs low

Assumptions

Customer Considerations

Documentation Considerations

  • Target audience: internal
  • Updated content: none at this time.

Notes

In progress:

  • CI flakes:
    • Configurable timeouts for e2e tests
      • Azure is slow and times out often
      • Cinder times out formatting volumes
      • AWS resize test times out

 

High prio:

  • Env. check tool for VMware - users often mis-configure permissions there and blame OpenShift. If we had a tool they could run, it might report better errors.
    • Should it be part of the installer?
    • Spike exists
  • Add / use cloud API call metrics
    • Helps customers to understand why things are slow
    • Helps build cop to understand a flake
      • With a post-install step that filters data from Prometheus that’s still running in the CI job.
    • Ideas:
      • Cloud is throttling X% of API calls longer than Y seconds
      • Attach / detach / provisioning / deletion / mount / unmount / resize takes longer than X seconds?
    • Capture metrics of operations that are stuck and won’t finish.
      • Sweep operation map from executioner???
      • Report operation metric into the highest bucket after the bucket threshold (i.e. if 10minutes is the last bucket, report an operation into this bucket after 10 minutes and don’t wait for its completion)?
      • Ask the monitoring team?
    • Include in CSI drivers too.
      • With alerts too

Unsorted

  • As the number of storage operators grows, it would be grafana board for storage operators
    • CSI driver metrics (from CSI sidecars + the driver itself  + its operator?)
    • CSI migration?
  • Get aggregated logs in cluster
    • They're rotated too soon
    • No logs from dead / restarted pods
    • No tools to combine logs from multiple pods (e.g. 3 controller managers)
  • What storage issues customers have? it was 22% of all issues.
    • Insufficient docs?
    • Probably garbage
  • Document basic storage troubleshooting for our supports
    • What logs are useful when, what log level to use
    • This has been discussed during the GSS weekly team meeting; however, it would be beneficial to have this documented.
  • Common vSphere errors, their debugging and fixing. 
  • Document sig-storage flake handling - not all failed [sig-storage] tests are ours

Epic Goal

  • Update all images that we ship with OpenShift to the latest upstream releases and libraries.
  • Exact content of what needs to be updated will be determined as new images are released upstream, which is not known at the beginning of OCP development work. We don't know what new features will be included and should be tested and documented. Especially new CSI drivers releases may bring new, currently unknown features. We expect that the amount of work will be roughly the same as in the previous releases. Of course, QE or docs can reject an update if it's too close to deadline and/or looks too big.

Traditionally we did these updates as bugfixes, because we did them after the feature freeze (FF). Trying no-feature-freeze in 4.12. We will try to do as much as we can before FF, but we're quite sure something will slip past FF as usual.

Why is this important?

  • We want to ship the latest software that contains new features and bugfixes.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

(Using separate cards for each driver because these updates can be more complicated)

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

(Using separate cards for each driver because these updates can be more complicated)

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

(Using separate cards for each driver because these updates can be more complicated)

There is a new driver release 5.0.0 since the last rebase that includes snapshot support:

https://github.com/kubernetes-sigs/ibm-vpc-block-csi-driver/releases/tag/v5.0.0

Rebase the driver on v5.0.0 and update the deployments in ibm-vpc-block-csi-driver-operator.
There are no corresponding changes in ibm-vpc-node-label-updater since the last rebase.

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

(Using separate cards for each driver because these updates can be more complicated)

Update all OCP and kubernetes libraries in storage operators to the appropriate version for OCP release.

This includes (but is not limited to):

  • Kubernetes:
    • client-go
    • controller-runtime
  • OCP:
    • library-go
    • openshift/api
    • openshift/client-go
    • operator-sdk

Operators:

  • aws-ebs-csi-driver-operator 
  • aws-efs-csi-driver-operator
  • azure-disk-csi-driver-operator
  • azure-file-csi-driver-operator
  • openstack-cinder-csi-driver-operator
  • gcp-pd-csi-driver-operator
  • gcp-filestore-csi-driver-operator
  • manila-csi-driver-operator
  • ovirt-csi-driver-operator
  • vmware-vsphere-csi-driver-operator
  • alibaba-disk-csi-driver-operator
  • ibm-vpc-block-csi-driver-operator
  • csi-driver-shared-resource-operator

 

  • cluster-storage-operator
  • csi-snapshot-controller-operator
  • local-storage-operator
  • vsphere-problem-detector

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

This includes ibm-vpc-node-label-updater!

(Using separate cards for each driver because these updates can be more complicated)

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

(Using separate cards for each driver because these updates can be more complicated)

The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

The End of General support for vSphere 6.7 will be on October 15, 2022. So, vSphere 6.7 will be deprecated for 4.11.

We want to encourage vSphere customers to upgrade to vSphere 7 in OCP 4.11 since VMware is EOLing (general support) for vSphere 6.7 in Oct 2022.

We want the cluster Upgradeable=false + have a strong alert pointing to our docs / requirements.

related slack: https://coreos.slack.com/archives/CH06KMDRV/p1647541493096729

tldr: three basic claims, the rest is explanation and one example

  1. We cannot improve long term maintainability solely by fixing bugs.
  2. Teams should be asked to produce designs for improving maintainability/debugability.
  3. Specific maintenance items (or investigation of maintenance items), should be placed into planning as peer to PM requests and explicitly prioritized against them.

While bugs are an important metric, fixing bugs is different than investing in maintainability and debugability. Investing in fixing bugs will help alleviate immediate problems, but doesn't improve the ability to address future problems. You (may) get a code base with fewer bugs, but when you add a new feature, it will still be hard to debug problems and interactions. This pushes a code base towards stagnation where it gets harder and harder to add features.

One alternative is to ask teams to produce ideas for how they would improve future maintainability and debugability instead of focusing on immediate bugs. This would produce designs that make problem determination, bug resolution, and future feature additions faster over time.

I have a concrete example of one such outcome of focusing on bugs vs quality. We have resolved many bugs about communication failures with ingress by finding problems with point-to-point network communication. We have fixed the individual bugs, but have not improved the code for future debugging. In so doing, we chase many hard to diagnose problem across the stack. The alternative is to create a point-to-point network connectivity capability. this would immediately improve bug resolution and stability (detection) for kuryr, ovs, legacy sdn, network-edge, kube-apiserver, openshift-apiserver, authentication, and console. Bug fixing does not produce the same impact.

We need more investment in our future selves. Saying, "teams should reserve this" doesn't seem to be universally effective. Perhaps an approach that directly asks for designs and impacts and then follows up by placing the items directly in planning and prioritizing against PM feature requests would give teams the confidence to invest in these areas and give broad exposure to systemic problems.


Relevant links:

OCP/Telco Definition of Done

Epic Template descriptions and documentation.

Epic Goal

Why is this important?

  • This regression is a major performance and stability issue and it has happened once before.

Drawbacks

  • The E2E test may be complex due to trying to determine what DNS pods are responding to DNS requests. This is straightforward using the chaos plugin.

Scenarios

  • CI Testing

Acceptance Criteria

  • CI - MUST be running successfully with tests automated

Dependencies (internal and external)

  1. SDN Team

Previous Work (Optional):

  1. N/A

Open questions::

  1. Where do these E2E test go? SDN Repo? DNS Repo?

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub
    Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub
    Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Enable the chaos plugin https://coredns.io/plugins/chaos/ in our CoreDNS configuration so that we can use a DNS query to easily identify what DNS pods are responding to our requests.

Epic Goal

  • Change the default value for the spec.tuningOptions.maxConnections field in the IngressController API, which configures the HAProxy maxconn setting, to 50000 (fifty thousand).

Why is this important?

  • The maxconn setting constrains the number of simultaneous connections that HAProxy accepts. Beyond this limit, the kernel queues incoming connections. 
  • Increasing maxconn enables HAProxy to queue incoming connections intelligently.  In particular, this enables HAProxy to respond to health probes promptly while queueing other connections as needed.
  • The default setting of 20000 has been in place since OpenShift 3.5 was released in April 2017 (see BZ#1405440, commit, RHBA-2017:0884). 
  • Hardware capabilities have increased over time, and the current default is too low for typical modern machine sizes. 
  • Increasing the default setting improves HAProxy's performance at an acceptable cost in the common case. 

Scenarios

  1. As a cluster administrator who is installing OpenShift on typical hardware, I want OpenShift router to be tuned appropriately to take advantage of my hardware's capabilities.

Acceptance Criteria

  • CI is passing. 
  • The new default setting is clearly documented. 
  • A release note informs cluster administrators of the change to the default setting. 

Dependencies (internal and external)

  1. None.

Previous Work (Optional):

  1. The  haproxy-max-connections-tuning enhancement made maxconn configurable without changing the default.  The enhancement document details the tradeoffs in terms of memory for various settings of nbthreads and maxconn with various numbers of routes. 

Open questions::

  1. ...

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

 

Feature Overview

  • This Section:* High-Level description of the feature ie: Executive Summary
  • Note: A Feature is a capability or a well defined set of functionality that delivers business value. Features can include additions or changes to existing functionality. Features can easily span multiple teams, and multiple releases.

 

Goals

  • This Section:* Provide high-level goal statement, providing user context and expected user outcome(s) for this feature

 

Requirements

  • This Section:* A list of specific needs or objectives that a Feature must deliver to satisfy the Feature.. Some requirements will be flagged as MVP. If an MVP gets shifted, the feature shifts. If a non MVP requirement slips, it does not shift the feature.

 

Requirement Notes isMvp?
CI - MUST be running successfully with test automation This is a requirement for ALL features. YES
Release Technical Enablement Provide necessary release enablement details and documents. YES

 

(Optional) Use Cases

This Section: 

  • Main success scenarios - high-level user stories
  • Alternate flow/scenarios - high-level user stories
  • ...

 

Questions to answer…

  • ...

 

Out of Scope

 

Background, and strategic fit

This Section: What does the person writing code, testing, documenting need to know? What context can be provided to frame this feature.

 

Assumptions

  • ...

 

Customer Considerations

  • ...

 

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?  
  • New Content, Updates to existing content,  Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

As a developer, I want to make status.HostIP for Pods visible in the Pod details page of the OCP Web Console. Currently there is no way to view the node IP for a Pod in the OpenShift Web Console.  When viewing a Pod in the console, the field status.HostIP is not visible.

 

Acceptance criteria:

  • Make pod's HostIP field visible in the pod details page, similarly to PodIP field

When OCP is performing cluster upgrade user should be notified about this fact.

There are two possibilities how to surface the cluster upgrade to the users:

  • Display a console notification throughout OCP web UI saying that the cluster is currently under upgrade.
  • Global notification throughout OCP web UI saying that the cluster is currently under upgrade.
  • Have an alert firing for all the users of OCP stating the cluster is undergoing an upgrade. 

 

AC:

  • Console-operator will create a ConsoleNotification CR when the cluster is being upgraded. Once the upgrade is done console-operator will remote that CR. These are the three statuses based on which we are determining if the cluster is being upgraded.
  • Add unit tests

 

Note: We need to decide if we want to distinguish this particular notification by a different color? ccing Ali Mobrem 

 

Created from: https://issues.redhat.com/browse/RFE-3024

As a console user I want to have option to:

  • Restart Deployment
  • Retry latest DeploymentConfig if it failed

 

For Deployments we will add the 'Restart rollout' action button. This action will PATCH the Deployment object's 'spec.template.metadata.annotations' block, by adding 'openshift.io/restartedAt: <actual-timestamp>' annotation. This will restart the deployment, by creating a new ReplicaSet.

  • action is disabled if:
    • Deployment is paused

 

For DeploymentConfig we will add 'Retry rollout' action button.  This action will PATCH the latest revision of ReplicationController object's 'metadata.annotations' block by setting 'openshift.io/deployment/phase: "New"' and removing openshift.io/deployment.cancelled and openshift.io/deployment.status-reason.

  • action is enabled if:
    • latest revision of the ReplicationController resource is in Failed phase
  • action is disabled if:
    • latest revision of the ReplicationController resource is in Complete phase
    • DeploymentConfig does not have any rollouts
    • DeploymentConfigs is paused

 

Acceptance Criteria:

  • Add the 'Restart rollout' action button for the Deployment resource to both action menu and kebab menu
  • Add the 'Retry rollout' action button for the DeploymentConfig resource to both action menu and kebab menu

 

BACKGROUND:

OpenShift console will be updated to allow rollout restart deployment from the console itself.

Currently, from the OpenShift console, for the resource “deploymentconfigs” we can only start and pause the rollout, and for the resource “deployment” we can only resume the rollout. None of the resources (deployment & deployment config) has this option to restart the rollout. So, that is the reason why the customer wants this functionality to perform the same action from the CLI as well as the OpenShift console.

The customer wants developers who are not fluent with the oc tool and terminal utilities, can use the console instead of the terminal to restart deployment, just like we use to do it through CLI using the command “oc rollout restart deploy/<deployment-name>“.
Usually when developers change the config map that deployment uses they have to restart pods. Currently, the developers have to use the oc rollout restart deployment command. The customer wants the functionality to get this button/menu to perform the same action from the console as well.

Design
Doc: https://docs.google.com/document/d/1i-jGtQGaA0OI4CYh8DH5BBIVbocIu_dxNt3vwWmPZdw/edit

OC mirror is GA product as of Openshift 4.11 .

The goal of this feature is to solve any future customer request for new features or capabilities in OC mirror 

Epic Goal

  • Mirror to mirror operations and custom mirroring flows required by IBM CloudPak catalog management

Why is this important?

  • IBM needs additional customization around the actual mirroring of images to enable CloudPaks to fully adopt OLM-style operator packaging and catalog management
  • IBM CloudPaks introduce additional compute architectures, increasing the download volume by 2/3rds to day, we need the ability to effectively filter non-required image versions of OLM operator catalogs during filtering for other customers that only require a single or a subset of the available image architectures
  • IBM CloudPaks regularly run on older OCP versions like 4.8 which require additional work to be able to read the mirrored catalog produced by oc mirror

Scenarios

  1. Customers can use the oc utility and delegate the actual image mirror step to another tool
  2. Customers can mirror between disconnected registries using the oc utility
  3. The oc utility supports filtering manifest lists in the context of multi-arch images according to the sparse manifest list proposal in the distribution spec

Acceptance Criteria

  • Customers can use the oc utility to mirror between two different air-gapped environments
  • Customers can specify the desired computer architectures and oc mirror will create sparse manifest lists in the target registry as a result

Dependencies (internal and external)

Previous Work:

  1. WRKLDS-369
  2. Disconnected Mirroring Improvement Proposal

Related Work:

  1. https://github.com/opencontainers/distribution-spec/pull/310
  2. https://github.com/distribution/distribution/pull/3536
  3. https://docs.google.com/document/d/10ozLoV7sVPLB8msLx4LYamooQDSW-CAnLiNiJ9SER2k/edit?usp=sharing

Pre-Work Objectives

Since some of our requirements from the ACM team will not be available for the 4.12 timeframe, the team should work on anything we can get done in the scope of the console repo so that when the required items are available in 4.13, we can be more nimble in delivering GA content for the Unified Console Epic.

Overall GA Key Objective
Providing our customers with a single simplified User Experience(Hybrid Cloud Console)that is extensible, can run locally or in the cloud, and is capable of managing the fleet to deep diving into a single cluster. 
Why customers want this?

  1. Single interface to accomplish their tasks
  2. Consistent UX and patterns
  3. Easily accessible: One URL, one set of credentials

Why we want this?

  • Shared code -  improve the velocity of both teams and most importantly ensure consistency of the experience at the code level
  • Pre-built PF4 components
  • Accessibility & i18n
  • Remove barriers for enabling ACM

Phase 2 Goal: Productization of the united Console 

  1. Enable user to quickly change context from fleet view to single cluster view
    1. Add Cluster selector with “All Cluster” Option. “All Cluster” = ACM
    2. Shared SSO across the fleet
    3. Hub OCP Console can connect to remote clusters API
    4. When ACM Installed the user starts from the fleet overview aka “All Clusters”
  2. Share UX between views
    1. ACM Search —> resource list across fleet -> resource details that are consistent with single cluster details view
    2. Add Cluster List to OCP —> Create Cluster

As a developer I would like to disable clusters like *KS that we can't support for multi-cluster (for instance because we can't authenticate). The ManagedCluster resource has a vendor label that we can use to know if the cluster is supported.

cc Ali Mobrem Sho Weimer Jakub Hadvig 

UPDATE: 9/20/22 : we want an allow-list with OpenShift, ROSA, ARO, ROKS, and  OpenShiftDedicated

Acceptance criteria:

  • Investigate if console-operator should pass info about which cluster are supported and unsupported to the frontend
  • Unsupported clusters should not appear in the cluster dropdown
  • Unsupported clusters based off
    • defined vendor label
    • non 4.x ocp clusters

Feature Overview

RHEL CoreOS should be updated to RHEL 9.2 sources to take advantage of newer features, hardware support, and performance improvements.

 

Requirements

  • RHEL 9.x sources for RHCOS builds starting with OCP 4.13 and RHEL 9.2.

 

Requirement Notes isMvp?
CI - MUST be running successfully with test automation This is a requirement for ALL features. YES
Release Technical Enablement Provide necessary release enablement details and documents. YES

(Optional) Use Cases

  • 9.2 Preview via Layering No longer necessary assuming we stay the course of going all in on 9.2

Assumptions

  • ...

Customer Considerations

  • ...

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

PROBLEM

We would like to improve our signal for RHEL9 readiness by increasing internal engineering engagement and external partner engagement on our community OpehShift offering, OKD.

PROPOSAL

Adding OKD to run on SCOS (a CentOS stream for CoreOS) brings the community offering closer to what a partner or an internal engineering team might expect on OCP.

ACCEPTANCE CRITERIA

Image has been switched/included: 

DEPENDENCIES

The SCOS build payload.

RELATED RESOURCES

OKD+SCOS proposal: https://docs.google.com/presentation/d/1_Xa9Z4tSqB7U2No7WA0KXb3lDIngNaQpS504ZLrCmg8/edit#slide=id.p

OKD+SCOS work draft: https://docs.google.com/document/d/1cuWOXhATexNLWGKLjaOcVF4V95JJjP1E3UmQ2kDVzsA/edit

 

Acceptance Criteria

A stable OKD on SCOS is built and available to the community sprintly.

 

This comes up when installing ipi-on-aws on arm64 with the custom payload build at quay.io/aleskandrox/okd-release:4.12.0-0.okd-centos9-full-rebuild-arm64 that is using scos as machine-content-os image

 

```

[root@ip-10-0-135-176 core]# crictl logs c483c92e118d8
2022-08-11T12:19:39+00:00 [cnibincopy] FATAL ERROR: Unsupported OS ID=scos
```

 

The probable fix has to land on https://github.com/openshift/cluster-network-operator/blob/master/bindata/network/multus/multus.yaml#L41-L53

Overview 

HyperShift came to life to serve multiple goals, some are main near-term, some are secondary that serve well long-term. 

Main Goals for hosted control planes (HyperShift)

  • Optimize OpenShift for Cost/footprint/ which improves our competitive stance against the *KSes
  • Establish separation of concerns which makes it more resilient for SRE to manage their workload clusters (be it security, configuration management, etc).
  • Simplify and enhance multi-cluster management experience especially since multi-cluster is becoming an industry need nowadays. 

Secondary Goals

HyperShift opens up doors to penetrate the market. HyperShift enables true hybrid (CP and Workers decoupled, mixed IaaS, mixed Arch,...). An architecture that opens up more options to target new opportunities in the cloud space. For more details on this one check: Hosted Control Planes (aka HyperShift) Strategy [Live Document]

 

Hosted Control Planes (HyperShift) Map 

To bring hosted control planes to our customers, we need the means to ship it. Today MCE is how HyperShift shipped, and installed so that customers can use it. There are two main customers for hosted-control-planes: 

 

  • Self-managed: In that case, Red Hat would provide hosted control planes as a service that is managed and SREed by the customer for their tenants (hence “self”-managed). In this management model, our external customers are the direct consumers of the multi-cluster control plane as a servie. Once MCE is installed, they can start to self-service dedicated control planes. 

 

  • Managed: This is OpenShift as a managed service, today we only “manage” the CP, and share the responsibility for other system components, more info here. To reduce management costs incurred by service delivery organizations which translates to operating profit (by reducing variable costs per control-plane), as well as to improve user experience, lower platform overhead (allow customers to focus mostly on writing applications and not concern themselves with infrastructure artifacts), and improve the cluster provisioning experience. HyperShift is shipped via MCE, and delivered to Red Hat managed SREs (same consumption route). However, for managed services, additional tooling needs to be refactored to support the new provisioning path. Furthermore, unlike self-managed where customers are free to bring their own observability stack, Red Hat managed SREs need to observe the managed fleet to ensure compliance with SLOs/SLIs/…

 

If you have noticed, MCE is the delivery mechanism for both management models. The difference between managed and self-managed is the consumer persona. For self-managed, it's the customer SRE for managed its the RH SRE

High-level Requirements

For us to ship HyperShift in the product (as hosted control planes) in either management model, there is a necessary readiness checklist that we need to satisfy. Below are the high-level requirements needed before GA: 

 

  • Hosted control planes fits well with our multi-cluster story (with MCE)
  • Hosted control planes APIs are stable for consumption  
  • Customers are not paying for control planes/infra components.  
  • Hosted control planes has an HA and a DR story
  • Hosted control planes is in parity with top-level add-on operators 
  • Hosted control planes reports metrics on usage/adoption
  • Hosted control planes is observable  
  • HyperShift as a backend to managed services is fully unblocked.

 

Please also have a look at our What are we missing in Core HyperShift for GA Readiness? doc. 

Hosted control planes fits well with our multi-cluster story

Multi-cluster is becoming an industry need today not because this is where trend is going but because it’s the only viable path today to solve for many of our customer’s use-cases. Below is some reasoning why multi-cluster is a NEED:

 

 

As a result, multi-cluster management is a defining category in the market where Red Hat plays a key role. Today Red Hat solves for multi-cluster via RHACM and MCE. The goal is to simplify fleet management complexity by providing a single pane of glass to observe, secure, police, govern, configure a fleet. I.e., the operand is no longer one cluster but a set, a fleet of clusters. 

HyperShift logically centralized architecture, as well as native separation of concerns and superior cluster lifecyle management experience, makes it a great fit as the foundation of our multi-cluster management story. 

Thus the following stories are important for HyperShift: 

  • When lifecycling OpenShift clusters (for any OpenShift form factor) on any of the supported providers from MCE/ACM/OCM/CLI as a Cluster Service Consumer  (RH managed SRE, or self-manage SRE/admin):
  • I want to be able to use a consistent UI so I can manage and operate (observe, govern,...) a fleet of clusters.
  • I want to specify HA constraints (e.g., deploy my clusters in different regions) while ensuring acceptable QoS (e.g., latency boundaries) to ensure/reduce any potential downtime for my workloads. 
  • When operating OpenShift clusters (for any OpenShift form factor) on any of the supported provider from MCE/ACM/OCM/CLI as a Cluster Service Consumer  (RH managed SRE, or self-manage SRE/admin):
  • I want to be able to backup any critical data so I am able to restore them in case of hosting service cluster (management cluster) failure. 

Refs:

Hosted control planes APIs are stable for consumption.

 

HyperShift is the core engine that will be used to provide hosted control-planes for consumption in managed and self-managed. 

 

Main user story:  When life cycling clusters as a cluster service consumer via HyperShift core APIs, I want to use a stable/backward compatible API that is less susceptible to future changes so I can provide availability guarantees. 

 

Ref: What are we missing in Core HyperShift for GA Readiness?

Customers are not paying for control planes/infra components. 

 

Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.

Assumptions

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure , and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

HyperShift - proposed cuts from data plane

HyperShift has an HA and a DR story

When operating OpenShift clusters (for any OpenShift form factor) from MCE/ACM/OCM/CLI as a Cluster Service Consumer  (RH managed SRE, or self-manage SRE/admin) I want to be able to migrate CPs from one hosting service cluster to another:

  • as means for disaster recovery in the case of total failure
  • so that scaling pressures on a management cluster can be mitigated or a management cluster can be decommissioned.

More information: 

 

Hosted control planes reports metrics on usage/adoption

To understand usage patterns and inform our decision making for the product. We need to be able to measure adoption and assess usage.

See Hosted Control Planes (aka HyperShift) Strategy [Live Document]

Hosted control plane is observable  

Whether it's managed or self-managed, it’s pertinent to report health metrics to be able to create meaningful Service Level Objectives (SLOs), alert of failure to meet our availability guarantees. This is especially important for our managed services path. 

HyperShift is in parity with top-level add-on operators

https://issues.redhat.com/browse/OCPPLAN-8901 

Unblock HyperShift as a backend to managed services

HyperShift for managed services is a strategic company goal as it improves usability, feature, and cost competitiveness against other managed solutions, and because managed services/consumption-based cloud services is where we see the market growing (customers are looking to delegate platform overhead). 

 

We should make sure our SD milestones are unblocked by the core team. 

 

Note 

This feature reflects HyperShift core readiness to be consumed. When all related EPICs and stories in this EPIC are complete HyperShift can be considered ready to be consumed in GA form. This does not describe a date but rather the readiness of core HyperShift to be consumed in GA form NOT the GA itself.

- GA date for self-managed will be factoring in other inputs such as adoption, customer interest/commitment, and other factors. 
- GA dates for ROSA-HyperShift are on track, tracked in milestones M1-7 (have a look at https://issues.redhat.com/browse/OCPPLAN-5771

Epic Goal*

The goal is to split client certificate trust chains from the global Hypershift root CA.

 
Why is this important? (mandatory)

This is important to:

  • assure a workload can be run on any kind of OCP flavor
  • reduce the blast radius in case of a sensitive material leak
  • separate trust to allow more granular control over client certificate authentication

 
Scenarios (mandatory) 

Provide details for user scenarios including actions to be performed, platform specifications, and user personas.  

  1. I would like to be able to run my workloads on any OpenShift-like platform.
    My workloads allow components to authenticate using client certificates based
    on a trust bundle that I am able to retrieve from the cluster.
  1. I don't want my users to have access to any CA bundle that would allow them
    to trust a random certificate from the cluster for client certificate authentication.

 
Dependencies (internal and external) (mandatory)

Hypershift team needs to provide us with code reviews and merge the changes we are to deliver

Contributing Teams(and contacts) (mandatory) 

  • Development - OpenShift Auth, Hypershift
  • Documentation -OpenShift Auth Docs team
  • QE - OpenShift Auth QE
  • PX - I have no idea what PX is
  • Others - others

Acceptance Criteria (optional)

The serviceaccount CA bundle automatically injected to all pods cannot be used to authenticate any client certificate generated by the control-plane.

Drawbacks or Risk (optional)

Risk: there is a throbbing time pressure as this should be delivered before first stable Hypershift release

Done - Checklist (mandatory)

  • CI Testing -  Basic e2e automationTests are merged and completing successfully
  • Documentation - Content development is complete.
  • QE - Test scenarios are written and executed successfully.
  • Technical Enablement - Slides are complete (if requested by PLM)
  • Engineering Stories Merged
  • All associated work items with the Epic are closed
  • Epic status should be “Release Pending” 

Feature Overview (aka. Goal Summary)  

The MCO should properly report its state in a way that's consistent and able to be understood by customers, troubleshooters, and maintainers alike. 

Some customer cases have revealed scenarios where the MCO state reporting is misleading and therefore could be unreliable to base decisions and automation on.

In addition to correcting some incorrect states, the MCO will be enhanced for a more granular view of update rollouts across machines.

The MCO should properly report its state in a way that's consistent and able to be understood by customers, troubleshooters, and maintainers alike. 

For this epic, "state" means "what is the MCO doing?" – so the goal here is to try to make sure that it's always known what the MCO is doing. 

This includes: 

  • Conditions
  • Some Logging 
  • Possibly Some Events 

While this probably crosses a little bit into the "status" portion of certain MCO objects, as some state is definitely recorded there, this probably shouldn't turn into a "better status reporting" epic.  I'm interpreting "status" to mean "how is it going" so status is maybe a "detail attached to a state". 

 

Exploration here: https://docs.google.com/document/d/1j6Qea98aVP12kzmPbR_3Y-3-meJQBf0_K6HxZOkzbNk/edit?usp=sharing

 

https://docs.google.com/document/d/17qYml7CETIaDmcEO-6OGQGNO0d7HtfyU7W4OMA6kTeM/edit?usp=sharing

 

The current property description is:

configuration represents the current MachineConfig object for the machine config pool.

But in a 4.12.0-ec.4 cluster, the actual semantics seem to be something closer to "the most recent rendered config that we completely leveled on". We should at least update the godocs to be more specific about the intended semantics. And perhaps consider adjusting the semantics?

Complete Epics

This section includes Jira cards that are linked to an Epic, but the Epic itself is not linked to any Feature. These epics were completed when this image was assembled

Epic Goal

  • Update OpenShift components that are owned by the Builds + Jenkins Team to use Kubernetes 1.25

Why is this important?

  • Our components need to be updated to ensure that they are using the latest bug/CVE fixes, features, and that they are API compatible with other OpenShift components.

Acceptance Criteria

  • Existing CI/CD tests must be passing

This is epic tracks "business as usual" requirements / enhancements / bug fixing of Insights Operator.

Today the links point at a rule-scoped page, but that page lacks information about recommended resolution.  You can click through by cluster ID to your specific cluster and get that recommendation advice, but it would be more convenient and less confusing for customers if we linked directly to the cluster-scoped recommendation page.

We can implement by updating the template here to be:

fmt.Sprintf("https://console.redhat.com/openshift/insights/advisor/clusters/%s?first=%s%%7C%s", clusterID, ruleIDStr, rec.ErrorKey)

or something like that.

 

unknowns

request is clear, solution/implementation to be further clarified

This epic contains all the Dynamic Plugins related stories for OCP release-4.11 

Epic Goal

  • Track all the stories under a single epic

Acceptance Criteria

  •  

This story only covers API components. We will create a separate story for other utility functions.

Today we are generating documentation for Console's Dynamic Plugin SDK in
frontend/packages/dynamic-plugin-sdk. We are missing ts-doc for a set of hooks and components.

We are generating the markdown from the dynamic-plugin-sdk using

yarn generate-doc

Here is the list of the API that the dynamic-plugin-sdk is exposing:

https://gist.github.com/spadgett/0ddefd7ab575940334429200f4f7219a

Acceptance Criteria:

  • Add missing jsdocs for the API that dynamic-plugin-sdk exposes

Out of Scope:

  • This does not include work for integrating the API docs into the OpenShift docs
  • This does not cover other public utilities, only components.

This epic contains all the Dynamic Plugins related stories for OCP release-4.12

Epic Goal

  • Track all the stories under a single epic

Acceptance Criteria

when defining two proxy endpoints, 
apiVersion: console.openshift.io/v1alpha1
kind: ConsolePlugin
metadata:
...
name: forklift-console-plugin
spec:
displayName: Console Plugin Template
proxy:

  • alias: forklift-inventory
    authorize: true
    service:
    name: forklift-inventory
    namespace: konveyor-forklift
    port: 8443
    type: Service
  • alias: forklift-must-gather-api
    authorize: true
    service:
    name: forklift-must-gather-api
    namespace: konveyor-forklift
    port: 8443
    type: Service

service:
basePath: /
I get two proxy endpoints
/api/proxy/plugin/forklift-console-plugin/forklift-inventory
and
/api/proxy/plugin/forklift-console-plugin/forklift-must-gather-api

but both proxy to the `forklift-must-gather-api` service

e.g.
curl to:
[server url]/api/proxy/plugin/forklift-console-plugin/forklift-inventory
will point to the `forklift-must-gather-api` service, instead of the `forklift-inventory` service

The console has good error boundary components that are useful for dynamic plugin.
Exposing them will enable the plugins to get the same look and feel of handling react errors as console
The minimum requirement right now is to expose the ErrorBoundaryFallbackPage component from
https://github.com/openshift/console/blob/master/frontend/packages/console-shared/src/components/error/fallbacks/ErrorBoundaryFallbackPage.tsx

`@openshift-console/plugin-shared` (NPM) is a package that will contain shared components that can be upversioned separately by the Plugins so they can keep core compatibility low but upversion and support more shared components as we need them.

This isn't documented today. We need to do that.

Acceptance Criteria

  • Add a note in the "SDK packages" section of the README about the existence of this package and it's purpose
    • The purpose of being a static utility delivery library intended not to be tied to OpenShift Console versions and compatible with multiple version of OpenShift Console

We should have a global notification or the `Console plugins` page (e.g., k8s/cluster/operator.openshift.io~v1~Console/cluster/console-plugins) should alert users when console operator `spec.managementState` is `Unmanaged` as changes to `enabled` for plugins will have no effect.

During the development of https://issues.redhat.com/browse/CONSOLE-3062, it was determined additional information is needed in order to assist a user when troubleshooting a Failed plugin (see https://github.com/openshift/console/pull/11664#issuecomment-1159024959). As it stands today, there is no data available to the console to relay to the user regarding why the plugin Failed. Presumably, a message should be added to NotLoadedDynamicPlugin to address this gap.

 

AC: Add `message` property to NotLoadedDynamicPluginInfo type.

Currently the ConsolePlugins API version is v1alpha1. Since we are going GA with dynamic plugins we should be creating a v1 version.

This would require updates in following repositories:

  1. openshift/api (add the v1 version and generate a new CRD)
  2. openshift/client-go (picku the changes in the openshift/api repo and generate clients & informers for the new v1 version)
  3. openshift/console-operator repository will using both the new v1 version and v1alpha1 in code and manifests folder.

AC:

  • both v1 and v1alpha1 ConsolePlugins should be passed to the console-config.yaml when the plugins are enabled and present on the cluster.

 

NOTE: This story does not include the conversion webhook change which will be created as a follow on story

Based on API review CONSOLE-3145, we have decided to deprecate the following APIs:

  • useAccessReviewAllowed (use useAccessReview instead)
  • useSafetyFirst

cc Andrew Ballantyne Bryan Florkiewicz 

Currently our `api.md` does not generate docs with "tags" (aka `@deprecated`) – we'll need to add that functionality to the `generate-doc.ts` script. See the code that works for `console-extensions.md`

Following https://coreos.slack.com/archives/C011BL0FEKZ/p1650640804532309, it would be useful for us (network observability team) to have access to ResourceIcon in dynamic-plugin-sdk.

Currently ResourceLink is exported but not ResourceIcon

 

AC:

  • Require the ResourceIcon  from public to dynamic-plugin-sdk
  • Add the component to the dynamic-demo-plugin
  • Add a CI test to check for the ResourceIcon component

 

We neither use nor support static plugin nav extensions anymore so we should remove the API in the static plugin SDK and get rid of related cruft in our current nav components.

 

AC: Remove static plugin nav extensions code. Check the navigation code for any references to the old API.

The extension `console.dashboards/overview/detail/item` doesn't constrain the content to fit the card.

The details-card has an expectation that a <dd> item will be the last item (for spacing between items). Our static details-card items use a component called 'OverviewDetailItem'. This isn't enforced in the extension and can cause undesired padding issues if they just do whatever they want.

I feel our approach here should be making the extension take the props of 'OverviewDetailItem' where 'children' is the new 'component'.

Acceptance Criteria:

  • Deprecate the old extension (in docs, with date/stamp)
  • Make a new extension that applies a stricter type
  • Include this new extension next to the old one (with the error boundary around it)

To align with https://github.com/openshift/dynamic-plugin-sdk, plugin metadata field dependencies as well as the @console/pluginAPI entry contained within should be made optional.

If a plugin doesn't declare the @console/pluginAPI dependency, the Console release version check should be skipped for that plugin.

Move `frontend/public/components/nav` to `packages/console-app/src/components/nav` and address any issues resulting from the move.

There will be some expected lint errors relating to cyclical imports. These will require some refactoring to address.

This epic contains all the OLM related stories for OCP release-4.12

Epic Goal

  • Track all the stories under a single epic

This enhancement Introduces support for provisioning and upgrading heterogenous architecture clusters in phases.

 

We need to scan through the compute nodes and build a set of supported architectures from those. Each node on the cluster has a label for architecture: e.g. kubernetes.io/arch=arm64, kubernetes.io/arch=amd64 etc. Based on the set of supported architectures console will need to surface only those operators in the Operator Hub, which are supported on our Nodes.

 

AC: 

  1. Implement logic in the console-operator that will scan though all the nodes and build a set of all the architecture types that the cluster nodes run on and pass it to the console-config.yaml
  2. Add unit and e2e test cases in the console-operator repository.

 

@jpoulin is good to ask about heterogeneous clusters.

This enhancement Introduces support for provisioning and upgrading heterogenous architecture clusters in phases.

 

We need to scan through the compute nodes and build a set of supported architectures from those. Each node on the cluster has a label for architecture: e.g. `kuberneties.io/arch:arm64`, `kubernetes.io/arch:amd64` etc. Based on the set of supported architectures console will need to surface only those operators in the Operator Hub, which are supported on our Nodes. Each operator's PackageManifest contains a labels that indicates whats the operator's supported architecture, e.g.  `operatorframework.io/arch.s390x: supported`. An operator can be supported on multiple architectures

AC:

  1. Implement logic in the console's backend to read the set of architecture types from console-config.yaml and set it as a SERVER_FLAG.nodeArchitectures (Change similar to https://github.com/openshift/console/commit/39aabe171a2e89ed3757ac2146d252d087fdfd33)
  2. In Operator hub render only operators that are support on any given node, based on the SERVER_FLAG.nodeArchitectures field implemented in CONSOLE-3242.

 

OS and arch filtering: https://github.com/openshift/console/blob/2ad4e17d76acbe72171407fc1c66ca4596c8aac4/frontend/packages/operator-lifecycle-manager/src/components/operator-hub/operator-hub-items.tsx#L49-L86

 

@jpoulin is good to ask about heterogeneous clusters.

An epic we can duplicate for each release to ensure we have a place to catch things we ought to be doing regularly but can tend to fall by the wayside.

As a developer, I want to be able to clean up the css markup after making the css / scss changes required for dark mode and remove any old unused css / scss content. 

 

Acceptance criteria:

  • Remove any unused scss / css content after revamping for dark mode

Epic Goal

  • Enable OpenShift IPI Installer to deploy OCP to a shared VPC in GCP.
  • The host project is where the VPC and subnets are defined. Those networks are shared to one or more service projects.
  • Objects created by the installer are created in the service project where possible. Firewall rules may be the only exception.
  • Documentation outlines the needed minimal IAM for both the host and service project.

Why is this important?

  • Shared VPC's are a feature of GCP to enable granular separation of duties for organizations that centrally manage networking but delegate other functions and separation of billing. This is used more often in larger organizations where separate teams manage subsets of the cloud infrastructure. Enterprises that use this model would also like to create IPI clusters so that they can leverage the features of IPI. Currently organizations that use Shared VPC's must use UPI and implement the features of IPI themselves. This is repetative engineering of little value to the customer and an increased risk of drift from upstream IPI over time. As new features are built into IPI, organizations must become aware of those changes and implement them themselves instead of getting them "for free" during upgrades.

Scenarios

  1. Deploy cluster(s) into service project(s) on network(s) shared from a host project.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story:

As a user, I want to be able to:

  • skip creating service accounts in Terraform when using passthrough credentialsMode.
  • pass the installer service account to Terraform to be used as the service account for instances when using passthrough credentialsMode.

so that I can achieve

  • creating an IPI cluster using Shared VPC networks using a pre-created service account with the necessary permissions in the Host Project.

Acceptance Criteria:

Description of criteria:

  • Upstream documentation
  • Point 1
  • Point 2
  • Point 3

(optional) Out of Scope:

Detail about what is specifically not being delivered in the story

Engineering Details:

1. Proposed title of this feature request
Basic authentication for Helm Chart repository in helmchartrepositories.helm.openshift.io CRD.

2. What is the nature and description of the request?
As of v4.6.9, the HelmChartRepository CRD only supports client TLS authentication through spec.connectionConfig.tlsClientConfig.

3. Why do you need this? (List the business requirements here)
Basic authentication is widely used by many chart repositories managers (Nexus OSS, Artifactory, etc.)
Helm CLI also supports them with the helm repo add command.
https://helm.sh/docs/helm/helm_repo_add/

4. How would you like to achieve this? (List the functional requirements here)
Probably by extending the CRD:

spec:
connectionConfig:
username: username
password:
secretName: secret-name

The secret namespace should be openshift-config to align with the tlsClientConfig behavior.

5. For each functional requirement listed in question 4, specify how Red Hat and the customer can test to confirm the requirement is successfully implemented.
Trying to pull helm charts from remote private chart repositories that has disabled anonymous access and offers basic authentication.
E.g.: https://github.com/sonatype/docker-nexus

Owner: Architect:

Story (Required)

As an OCP user I will like to be able to install helm charts from repos added to ODC with basic authentication fields populated

Background (Required)

We need to support helm installs for Repos that have the basic authentication secret name and namespace.

Glossary

Out of scope

Updating the ProjectHelmChartRepository CRD, already done in diff story
Supporting the HelmChartRepository CR, this feature will be scoped first to project/namespace scope repos.

In Scope

<Defines what is included in this story>

Approach(Required)

If the new fields for basic auth are set in the repo CR then use those credentials when making API calls to helm to install/upgrade charts. We will error out if user logged in does not have access to the secret referenced by Repo CR. If basic auth fields are not present we assume is not an authenticated repo.

Dependencies

Nonet

Edge Case

NA

Acceptance Criteria

I can list, install and update charts on authenticated repos from ODC
Needs Documentation both upstream and downstream
Needs new unit test covering repo auth

INVEST Checklist

Dependencies identified
Blockers noted and expected delivery timelines set
Design is implementable
Acceptance criteria agreed upon
Story estimated

Legend

Unknown
Verified
Unsatisfied

Epic Goal

  • Support manifest lists by image streams and the integrated registry. Clients should be able to pull/push manifests lists from/into the integrated registry. They also should be able to import images via `oc import-image` and them pull them from the internal registry.

Why is this important?

  • Manifest lists are becoming more and more popular. Customers want to mirror manifest lists into the registry and be able to pull them by digest.

Scenarios

  1. Manifest lists can be pushed into the integrated registry
  2. Imported manifests list can be pulled from the integrated registry
  3. Image triggers work with manifest lists

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • Existing functionality shouldn't change its behavior

Dependencies (internal and external)

  1. ...

Previous Work (Optional)

  1. https://github.com/openshift/enhancements/blob/master/enhancements/manifestlist/manifestlist-support.md

Open questions

  1. Can we merge creation of images without having the pruner?

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

ACCEPTANCE CRITERIA

  • The ImageStream object should contain a new flag indicating that it refers to a manifest list
  • openshift-controller-manager uses new openshift/api code to import image streams
  • changing `importMode` of an image stream tag triggers a new import (i.e. updates generation in the tag spec)

NOTES

This is a follow up Epic to https://issues.redhat.com/browse/MCO-144, which aimed to get in-place upgrades for Hypershift. This epic aims to capture additional work to focus on using CoreOS/OCP layering into Hypershift, which has benefits such as:

 

 - removing or reducing the need for ignition

 - maintaining feature parity between self-driving and managed OCP models

 - adding additional functionality such as hotfixes

Right now in https://github.com/openshift/hypershift/pull/1258 you can only perform one upgrade at a time. Multiple upgrades will break due to controller logic

 

Properly create logic to handle manifest creation/updates and deletion, so the logic is more bulletproof

Currently not implemented, and will require the MCD hypershift mode to be adjusted to handle disruptionless upgrades like regular MCD

We plan to build Ironic Container Images using RHEL9 as base image in OCP 4.12

This is required because the ironic components have abandoned support for CentOS Stream 8 and Python 3.6/3.7 upstream during the most recent development cycle that will produce the stable Zed release, in favor of CentOS Stream 9 and Python 3.8/3.9

More info on RHEL8 to RHEL9 transition in OCP can be found at https://docs.google.com/document/d/1N8KyDY7KmgUYA9EOtDDQolebz0qi3nhT20IOn4D-xS4

Epic Goal

  • We need the installer to accept a LB type from user and then we could set type of LB in the following object.
    oc get ingress.config.openshift.io/cluster -o yaml
    Then we can fetch info from this object and reconcile the operator to have the NLB changes reflected.

 

This is an API change and we will consider this as a feature request.

Why is this important?

https://issues.redhat.com/browse/NE-799 Please check this for more details

 

Scenarios

https://issues.redhat.com/browse/NE-799 Please check this for more details

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. installer
  2. ingress operator

Previous Work (Optional):

 No

Open questions::

N/A

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

We need tests for the ovirt-csi-driver and the cluster-api-provider-ovirt. These tests help us to

  • minimize bugs,
  • reproduce and fix them faster and
  • pin down current behavior of the driver

Also, having dedicated tests on lower levels with a smaller scope (unit, integration, ...) has the following benefits:

  • fast feedback cycle (local test execution)
  • developer in-code documentation
  • easier onboarding for new contributers
  • lower resource consumption
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

Description

As a user, I would like to be informed in an intuitive way,  when quotas have been reached in a namespace

Acceptance Criteria

  1. Show an alert banner on the Topology and add page for this project/namespace when there is a RQ (Resource Quota) / ACRQ (Applied Cluster Resource Quota) issue
    PF guideline: https://www.patternfly.org/v4/components/alert/design-guidelines#using-alerts 
  2. The above alert should have a CTA link to the search page with all RQ, ACRQ and if there is just one show the details page for the same
  3. For RQ, ACRQ list view show one more column called status with details as shown in the project view.

Additional Details:

 

Refer below for more details 

Description

As a user, In the topology view, I would like to be updated intuitively if any of the deployments have reached quota limits

Acceptance Criteria

  1. Show a yellow border around deployments if any of the deployments have reached the quota limit
  2. For deployments, if there are any errors associated with resource limits or quotas, include a warning alert in the side panel.
    1. If we know resource limits are the cause, include link to Edit resource limits
    2. If we know pod count is the cause, include a link to Edit pod count

Additional Details:

 

Refer below for more details 

Goal

Provide a form driven experience to allow cluster admins to manage the perspectives to meet the ACs below.

Problem:

We have heard the following requests from customers and developer advocates:

  • Some admins do not want to provide access to the Developer Perspective from the console
  • Some admins do not want to provide non-priv users access to the Admin Perspective from the console

Acceptance criteria:

  1. Cluster administrator is able to "hide" the admin perspective for non-priv users
  2. Cluster administrator is able to "hide" the developer perspective for all users
  3. Be user that User Preferences for individual users behaves appropriately. If only one perspective is available, the perspective switcher is not needed.

Dependencies (External/Internal):

Design Artifacts:

Exploration:

Note:

Description

As an admin, I want to hide the admin perspective for non-privileged users or hide the developer perspective for all users

Based on the https://issues.redhat.com/browse/ODC-6730 enhancement proposal, it is required to extend the console configuration CRD to enable the cluster admins to configure this data in the console resource

Acceptance Criteria

  1. Extend the "customization" spec type definition for the CRD in the openshift/api project

Additional Details:

Previous customization work:

  1. https://issues.redhat.com/browse/ODC-5416
  2. https://issues.redhat.com/browse/ODC-5020
  3. https://issues.redhat.com/browse/ODC-5447

Description

As an admin, I want to be able to use a form driven experience  to hide user perspective(s)

Acceptance Criteria

  1. Add checkboxes with the options
    1. Hide "Administrator" perspective for non-privileged users
    2.  Hide "Developer" perspective for all users
  2. The console configuration CR should be updated as per the selected option

Additional Details:

Description

As an admin, I want to hide user perspective(s) based on the customization.

Acceptance Criteria

  1. Hide perspective(s) based on the customization
    1. When the admin perspective is disabled -> we hide the admin perspective for all unprivileged users
    2. When the dev perspective is disabled -> we hide the dev perspective for all users
  2. When all the perspectives are hidden from a user or for all users, show the Admin perspective by default

Additional Details:

Description

As an admin, I should be able to see a code snippet that shows how to add user perspectives

Based on the https://issues.redhat.com/browse/ODC-6732 enhancement proposal, the cluster admin can add user perspectives

To support the cluster-admin to configure the perspectives correctly, the developer console should provide a code snippet for the customization of yaml resource (Console CRD).

Customize Perspective Enhancement PR: https://github.com/openshift/enhancements/pull/1205

Acceptance Criteria

  1. When the admin opens the Console CRD there is a snippet in the sidebar which provides a default YAML which supports the admin to add user perspectives

Additional Details:

Previous work:

  1. https://issues.redhat.com/browse/ODC-5080
  2. https://issues.redhat.com/browse/ODC-5449

Problem:

Customers don't want their users to have access to some/all of the items which are available in the Developer Catalog.  The request is to change access for the cluster, not per user or persona.

Goal:

Provide a form driven experience to allow cluster admins easily disable the Developer Catalog, or one or more of the sub catalogs in the Developer Catalog.

Why is it important?

Multiple customer requests.

Acceptance criteria:

  1. As a cluster admin, I can hide/disable access to the developer catalog for all users across all namespaces.
  2. As a cluster admin, I can hide/disable access to a specific sub-catalog in the developer catalog for all users across all namespaces.
    1. Builder Images
    2. Templates
    3. Helm Charts
    4. Devfiles
    5. Operator Backed

Notes

We need to consider how this will work with subcatalogs which are installed by operators: VMs, Event Sources, Event Catalogs, Managed Services, Cloud based services

Dependencies (External/Internal):

Design Artifacts:

Exploration:

Note:

Description

As an admin, I want to hide sub-catalogs in the developer catalog or hide the developer catalog completely based on the customization.

Acceptance Criteria

  1. Hide all links to the sub-catalog(s) from the add page, topology actions, empty states, quick search, and the catalog itself
  2. The sub-catalog should show Not found if the user opens the sub-catalog directly
  3. The feature should not be hidden if a sub-catalog option is disabled

Additional Details:

Description

As an admin, I want to hide/disable access to specific sub-catalogs in the developer catalog or the complete dev catalog for all users across all namespaces.

Based on the https://issues.redhat.com/browse/ODC-6732 enhancement proposal, it is required to extend the console configuration CRD to enable the cluster admins to configure this data in the console resource

Acceptance Criteria

Extend the "customization" spec type definition for the CRD in the openshift/api project

Additional Details:

Previous customization work:

  1. https://issues.redhat.com/browse/ODC-5416
  2. https://issues.redhat.com/browse/ODC-5020
  3. https://issues.redhat.com/browse/ODC-5447

Description

As a cluster-admin, I should be able to see a code snippet that shows how to enable sub-catalogs or the entire dev catalog.

Based on the https://issues.redhat.com/browse/ODC-6732 enhancement proposal, the cluster admin can add sub-catalog(s)  from the Developer Catalog or the Dev catalog as a whole.

To support the cluster-admin to configure the sub-catalog list correctly, the developer console should provide a code snippet for the customization yaml resource (Console CRD).

Acceptance Criteria

  1. When the admin opens the Console CRD there is a snippet in the sidebar which provides a default YAML, which supports the admin to add sub-catalogs/the whole dev catalog

Additional Details:

Previous work:

  1. https://issues.redhat.com/browse/ODC-5080
  2. https://issues.redhat.com/browse/ODC-5449

Epic Goal

  • Facilitate the transition to for OLM and content to PSA enforcing the `restricted` security profile
  • Use the label synch'er to enforce the required security profile
  • Current content should work out-of-the-box as is
  • Upgrades should not be blocked

Why is this important?

  • PSA helps secure the cluster by enforcing certain security restrictions that the pod must meet to be scheduled
  • 4.12 will enforce the `restricted` profile, which will affect the deployment of operators in `openshift-*` namespaces 

Scenarios

  1. Admin installs operator in an `openshift-*`namespace that is not managed by the label syncher -> label should be applied
  2. Admin installs operator in an `openshift-*` namespace that has a label asking the label syncher to not reconcile it -> nothing changes

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • Done only downstream
  • Transition documentation written and reviewed

Dependencies (internal and external)

  1. label syncher (still searching for the link)

Open questions::

  1. Is this only for openshift-* namespaces?

Resources

Stakeholders

  • Daniel S...?

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

As an admin, I would like openshift-* namespaces with an operator to be labeled with security.openshift.io/scc.podSecurityLabelSync=true to ensure the continual functioning of operators without manual intervention. The label should only be applied to openshift-* namespaces with an operator (the presence of a ClusterServiceVersion resource) IF the label is not already present. This automation will help smooth functioning of the cluster and avoid frivolous operational events.

Context: As part of the PSA migration period, Openshift will ship with the "label sync'er" - a controller that will automatically adjust PSA security profiles in response to the workloads present in the namespace. We can assume that not all operators (produced by Red Hat, the community or ISVs) will have successfully migrated their deployments in response to upstream PSA changes. The label sync'er will sync, by default, any namespace not prefixed with "openshift-", of which an explicit label (security.openshift.io/scc.podSecurityLabelSync=true) is required for sync.

A/C:
 - OLM operator has been modified (downstream only) to label any unlabelled "openshift-" namespace in which a CSV has been created
 - If a labeled namespace containing at least one non-copied csv becomes unlabelled, it should be relabelled 
 - The implementation should be done in a way to eliminate or minimize subsequent downstream sync work (it is ok to make slight architectural changes to the OLM operator in the upstream to enable this)

This epic tracks network tooling improvements for 4.12

New framework and process should be developed to make sharing network tools with devs, support and customers convenient. We are going to add some tools for ovn troubleshooting before ovn-k goes default, also some tools that we got from customer cases, and some more to help analyze and debug collected logs based on stable must-gather/sosreport format we get now thanks to 4.11 Epic.

Our estimation for this Epic is 1 engineer * 2 Sprints

WHY:
This epic is important to help improve the time it takes our customers and our team to understand an issue within the cluster.
A focus of this epic is to develop tools to quickly allow debugging of a problematic cluster. This is crucial for the engineering team to help us scale. We want to provide a tool to our customers to help lower the cognitive burden to get at a root cause of an issue.

 

Alert if any of the ovn controllers disconnected for a period of time from the southbound database using metric ovn_controller_southbound_database_connected.

The metric updates every 2 minutes so please be mindful of this when creating the alert.

If the controller is disconnected for 10 minutes, fire an alert.

DoD: Merged to CNO and tested by QE

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Come up with a consistent way to detect node down on OCP and hypershift. Current mechanism for OCP (probe port 9) does not work for hypershift, meaning, hypershift node down detection will be longer (~40 secs). We should aim to have a common mechanism for both. As well, we should consider alternatives to the probing port 9. Perhaps BFD, or other detection.
  • Get clarification on node down detection times. Some customers have (apparently) asked for detection on the order of 100ms, recommendation is to use multiple Egress IPs, so this may not be a hard requirement. Need clarification from PM/Customers.

Why is this important?

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Add sock proxy to cluster-network-operator so egressip can use grpc to reach worker nodes.
 
With the introduction of grpc as means for determining the state of a given egress node, hypershift should
be able to leverage socks proxy and become able to know the state of each egress node.
 
References relevant to this work:
1281-network-proxy
[+https://coreos.slack.com/archives/C01C8502FMM/p1658427627751939+]
[+https://github.com/openshift/hypershift/pull/1131/commits/28546dc587dc028dc8bded715847346ff99d65ea+]

This Epic is here to track the rebase we need to do when kube 1.25 is GA https://www.kubernetes.dev/resources/release/

Keeping this in mind can help us plan our time better. ATTOW GA is planned for August 23

https://docs.google.com/document/d/1h1XsEt1Iug-W9JRheQas7YRsUJ_NQ8ghEMVmOZ4X-0s/edit --> this is the link for rebase help

Incomplete Epics

This section includes Jira cards that are linked to an Epic, but the Epic itself is not linked to any Feature. These epics were not completed when this image was assembled

Changes made in METAL-1 open up opportunities to improve our handling of images by cleaning up redundant code that generates extra work for the user and extra load for the cluster.

We only need to run the image cache DaemonSet if there is a QCOW URL to be mirrored (effectively this means a cluster installed with 4.9 or earlier). We can stop deploying it for new clusters installed with 4.10 or later.

Currently, the image-customization-controller relies on the image cache running on every master to provide the shared hostpath volume containing the ISO and initramfs. The first step is to replace this with a regular volume and an init container in the i-c-c pod that extracts the images from machine-os-images. We can use the copy-metal -image-build flag (instead of -all used in the shared volume) to provide only the required images.

Once i-c-c has its own volume, we can switch the image extraction in the metal3 Pod's init container to use the -pxe flag instead of -all.

The machine-os-images init container for the image cache (not the metal3 Pod) can be removed. The whole image cache deployment is now optional and need only be started if provisioningOSDownloadURL is set (and in fact should be deleted if it is not).

Epic Goal

  • To improve the reliability of disk cleaning before installation and to provide the user with sufficient warning regarding the consequences of the cleaning

Why is this important?

  • Insufficient cleaning can lead to installation failure
  • Insufficient warning can lead to complaints of unexpected data loss

Scenarios

  1.  

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Description of the problem:
When running assisted-installer on a machine where is more than one volume group per physical volume. Only the first volume group will be cleaned up. This leads to problems later and will lead to errors such as

Failed - failed executing nsenter [--target 1 --cgroup --mount --ipc --pid -- pvremove /dev/sda -y -ff], Error exit status 5, LastOutput "Can't open /dev/sda exclusively. Mounted filesystem? 

How reproducible:

Set up a VM with more than one volume group per physical volume. As an example, look at the following sample from a customer cluster.

List block devices
/usr/bin/lsblk -o NAME,MAJ:MIN,SIZE,TYPE,FSTYPE,KNAME,MODEL,UUID,WWN,HCTL,VENDOR,STATE,TRAN,PKNAME
NAME              MAJ:MIN   SIZE TYPE FSTYPE      KNAME MODEL            UUID                                   WWN                HCTL       VENDOR   STATE   TRAN PKNAME
loop0               7:0   125.9G loop xfs         loop0                  c080b47b-2291-495c-8cc0-2009ebc39839                                                       
loop1               7:1   885.5M loop squashfs    loop1                                                                                                             
sda                 8:0   894.3G disk             sda   INTEL SSDSC2KG96                                        0x55cd2e415235b2db 1:0:0:0    ATA      running sas  
|-sda1              8:1     250M part             sda1                                                          0x55cd2e415235b2db                                  sda
|-sda2              8:2     750M part ext2        sda2                   3aa73c72-e342-4a07-908c-a8a49767469d   0x55cd2e415235b2db                                  sda
|-sda3              8:3      49G part xfs         sda3                   ffc3ccfe-f150-4361-8ae5-f87b17c13ac2   0x55cd2e415235b2db                                  sda
|-sda4              8:4   394.2G part LVM2_member sda4                   Ua3HOc-Olm4-1rma-q0Ug-PtzI-ZOWg-RJ63uY 0x55cd2e415235b2db                                  sda
`-sda5              8:5     450G part LVM2_member sda5                   W8JqrD-ZvaC-uNK9-Y03D-uarc-Tl4O-wkDdhS 0x55cd2e415235b2db                                  sda
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sda5
sdb                 8:16  894.3G disk             sdb   INTEL SSDSC2KG96                                        0x55cd2e415235b31b 1:0:1:0    ATA      running sas  
`-sdb1              8:17  894.3G part LVM2_member sdb1                   6ETObl-EzTd-jLGw-zVNc-lJ5O-QxgH-5wLAqD 0x55cd2e415235b31b                                  sdb
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sdb1
sdc                 8:32  894.3G disk             sdc   INTEL SSDSC2KG96                                        0x55cd2e415235b652 1:0:2:0    ATA      running sas  
`-sdc1              8:33  894.3G part LVM2_member sdc1                   pBuktx-XlCg-6Mxs-lddC-qogB-ahXa-Nd9y2p 0x55cd2e415235b652                                  sdc
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sdc1
sdd                 8:48  894.3G disk             sdd   INTEL SSDSC2KG96                                        0x55cd2e41521679b7 1:0:3:0    ATA      running sas  
`-sdd1              8:49  894.3G part LVM2_member sdd1                   exVSwU-Pe07-XJ6r-Sfxe-CQcK-tu28-Hxdnqo 0x55cd2e41521679b7                                  sdd
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sdd1
sr0                11:0     989M rom  iso9660     sr0   Virtual CDROM0   2022-06-17-18-18-33-00                                    0:0:0:0    AMI      running usb  

Now run the assisted installer and try to install an SNO node on this machine, you will find that the installation will fail with a message that indicates that it could not exclusively access /dev/sda

Actual results:

 The installation will fail with a message that indicates that it could not exclusively access /dev/sda

Expected results:

The installation should proceed and the cluster should start to install.

Suspected Cases
https://issues.redhat.com/browse/AITRIAGE-3809
https://issues.redhat.com/browse/AITRIAGE-3802
https://issues.redhat.com/browse/AITRIAGE-3810

Description of the problem:

Cluster Installation fail if installation disk has lvm on raid:

Host: test-infra-cluster-3cc862c9-master-0, reached installation stage Failed: failed executing nsenter [--target 1 --cgroup --mount --ipc --pid -- mdadm --stop /dev/md0], Error exit status 1, LastOutput "mdadm: Cannot get exclusive access to /dev/md0:Perhaps a running process, mounted filesystem or active volume group?" 

How reproducible:

100%

Steps to reproduce:

1. Install a cluster while master nodes has disk with LVM on RAID (reproduces using test: https://gitlab.cee.redhat.com/ocp-edge-qe/kni-assisted-installer-auto/-/blob/master/api_tests/test_disk_cleanup.py#L97)

Actual results:

Installation failed

Expected results:

Installation success

Epic Goal

  • Increase success-rate of of our CI jobs
  • Improve debugability / visibility or tests 

Why is this important?

  • Failed presubmit jobs (required or optional) can make an already tested+approved PR to not get in
  • Failed periodic jobs interfere our visibility around stability of features

Description of problem:

check_pkt_length cannot be offloaded without
1) sFlow offload patches in Openvswitch
2) Hardware driver support.

Since 1) will not be done anytime soon. We need a work around for the check_pkt_length issue.

Version-Release number of selected component (if applicable):

4.11/4.12

How reproducible:

Always

Steps to Reproduce:

1. Any flow that has check_pkt_len()
  5-b: Pod -> NodePort Service traffic (Pod Backend - Different Node)
  6-b: Pod -> NodePort Service traffic (Host Backend - Different Node)
  4-b: Pod -> Cluster IP Service traffic (Host Backend - Different Node)
  10-b: Host Pod -> Cluster IP Service traffic (Host Backend - Different Node)
  11-b: Host Pod -> NodePort Service traffic (Pod Backend - Different Node)
  12-b: Host Pod -> NodePort Service traffic (Host Backend - Different Node)   

Actual results:

Poor performance due to upcalls when check_pkt_len() is not supported.

Expected results:

Good performance.

Additional info:

https://docs.google.com/spreadsheets/d/1LHY-Af-2kQHVwtW4aVdHnmwZLTiatiyf-ySffC8O5NM/edit#gid=670206692

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Run OpenShift builds that do not execute as the "root" user on the host node.

Why is this important?

  • OpenShift builds require an elevated set of capabilities to build a container image
  • Builds currently run as root to maintain adequate performance
  • Container workloads should run as non-root from the host's perspective. Containers running as root are a known security risk.
  • Builds currently run as root and require a privileged container. See BUILD-225 for removing the privileged container requirement.

Scenarios

  1. Run BuildConfigs in a multi-tenant environment
  2. Run BuildConfigs in a heightened security environment/deployment

Acceptance Criteria

  • Developers can opt into running builds in a cri-o user namespace by providing an environment variable with a specific value.
  • When the correct environment variable is provided, builds run in a cri-o user namespace, and the build pod does not require the "privileged: true" security context.
  • User namespace builds can pass basic test scenarios for the Docker and Source strategy build.
  • Steps to run unprivileged builds are documented.

Dependencies (internal and external)

  1. Buildah supports running inside a non-privileged container
  2. CRI-O allows workloads to opt into running containers in user namespaces.

Previous Work (Optional):

  1. BUILD-225 - remove privileged requirement for builds.

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story

As a developer building container images on OpenShift
I want to specify that my build should run without elevated privileges
So that builds do not run as root from the host's perspective with elevated privileges

Acceptance Criteria

  • Developers can provide an environment variable to indicate the build should not use privileged containers
  • When the correct env var + value is specified, builds run in a user namespace (non-root on the host)

QE Impact

No QE required for Dev Preview. OpenShift regression testing will verify that existing behavior is not impacted.

Docs Impact

We will need to document how to enable this feature, with sufficient warnings regarding Dev Preview.

PX Impact

This likely warrants an OpenShift blog post, potentially?

Notes

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • ...

Why is this important?

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

We have been running into a number of problems with configure-ovs and nodeip-configuration selecting different interfaces in OVNK deployments. This causes connectivity issues, so we need some way to ensure that everything uses the same interface/IP.

Currently configure-ovs runs before nodeip-configuration, but since nodeip-configuration is the source of truth for IP selection regardless of CNI plugin, I think we need to look at swapping that order. That way configure-ovs could look at what nodeip-configuration chose and not have to implement its own interface selection logic.

I'm targeting this at 4.12 because even though there's probably still time to get it in for 4.11, changing the order of boot services is always a little risky and I'd prefer to do it earlier in the cycle so we have time to tease out any issues that arise. We may need to consider backporting the change though since this has been an issue at least back to 4.10.

Goal
Provide an indication that advanced features are used

Problem

Today, customers and RH don't have the information on the actual usage of advanced features.

Why is this important?

  1. Better focus upsell efforts
  2. Compliance information for customers that are not aware they are not using the right subscription

 

Prioritized Scenarios

In Scope
1. Add a boolean variable in our telemetry to mark if the customer is using advanced features (PV encryption, encryption with KMS, external mode). 

Not in Scope

Integrate with subscription watch - will be done by the subscription watch team with our help.

Customers

All

Customer Facing Story
As a compliance manager, I should be able to easily see if all my clusters are using the right amount of subscriptions

What does success look like?

A clear indication in subscription watch for ODF usage (either essential or advanced). 

1. Proposed title of this feature request

  • Request to add a bool variable into telemetry which indicates the usage of any of the advanced feature, like PV encryption or KMS encryption or external mode etc.

2. What is the nature and description of the request?

  • Today, customers and RH don't have the information on the actual usage of advanced features. This feature will help RH to have a better indication on the statistics of customers using the advanced features and focus better on upsell efforts.

3. Why does the customer need this? (List the business requirements here)

  • As a compliance manager, I should be able to easily see if all my clusters are using the right amount of subscriptions.

4. List any affected packages or components.

  • Telemetry

_____________________

Link to main epic: https://issues.redhat.com/browse/RHSTOR-3173

 

Other Complete

This section includes Jira cards that are not linked to either an Epic or a Feature. These tickets were completed when this image was assembled

Description of problem:

We need to include the `openshift_apps_deploymentconfigs_strategy_total` metrics to the IO archive file.

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1. Create a cluster
2. Download the IO archive
3. Check the file `config/metrics`
4. You must find `openshift_apps_deploymentconfigs_strategy_total` insde of it

Actual results:

 

Expected results:

You should see the `openshift_apps_deploymentconfigs_strategy_total` at the `config/metrics` file.

Additional info:

 

Description of problem:

The Alertmanager silence create / edit form got a new "Negative matcher" option in 4.12 (see https://issues.redhat.com/browse/OCPBUGSM-47734). However, there is nothing to explain what this option means and it will likely not be obvious from the label alone unless you are already quite familiar with Alertmanager.

After discussion with the docs team, it was decided that adding some explanation in context in the UI would be much better than adding an explanation to the documentation. 

Version-Release number of selected component (if applicable):

 

How reproducible:

Always

Steps to Reproduce:

1. Go to Admin perspective
2. Go to Observe > Alerting > Silences page
3. Click on the Create button ("Negative matcher" option is shown with no explanation)

Actual results:

 

Expected results:

 

Additional info:

 

And possibly other alerts.  Declaring namespace labels on alerts makes it easy to find the source or affected resource, as described here. But because Insights alerts are based on metrics exported by the cluster-version operator, they inherit source information from the CVO, and end up looking like:

ALERTS{alertname="SimpleContentAccessNotAvailable", alertstate="firing", condition="SCAAvailable", endpoint="metrics", instance="10.58.57.116:9099", job="cluster-version-operator", name="insights", namespace="openshift-cluster-version", pod="cluster-version-operator-5d8579fb58-p5hfn", prometheus="openshift-monitoring/k8s", reason="NotFound", receive="true", service="cluster-version-operator", severity="info"}

Adding namespace: openshift-insights to the labels block for InsightsDisabled and SimpleContentAccessNotAvailable would avoid this confusion.

You might also want to clear the job and service labels as irrelevant source information. And you might want to clear the pod label to avoid churning alerts when the CVO rolls out a new pod. You can get the label clearing by wrapping the expr with max without (job, pod, service) (...) or similar.

Description of problem:
project viewer is able to see a 'Create Pod Disruption Budget' button on Pods list page while the creation will fail finally due to less permission, in this way console should not show a 'Create Pod Disruption Budget' button for project viewer, other resources list page doesn’t have the issue

Version-Release number of selected component (if applicable):
4.10.0-0.nightly-2021-09-16-212009

How reproducible:
Always

Steps to Reproduce:
1. normal user has a project and workloads

  1. oc get all -n yapei1-project
    NAME READY STATUS RESTARTS AGE
    pod/example-787f749bb-czkms 1/1 Running 0 79s
    pod/example-787f749bb-m7wxt 1/1 Running 0 79s
    pod/example-787f749bb-mw8jv 1/1 Running 0 79s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/example 3/3 3 3 79s

NAME DESIRED CURRENT READY AGE
replicaset.apps/example-787f749bb 3 3 3 79s

2. grant another user with view access to user project 'yapei1-project'

  1. oc adm policy add-role-to-user view uiauto1 -n yapei1-project
    clusterrole.rbac.authorization.k8s.io/view added: "uiauto1"
    3. login with user 'uiauto1' and check the permissions on Pods list page

Actual results:
3. project viewer 'uiauto1' can see pods list successfully, at the same time console also shows a 'Create Pod Disruption Budget' button while the creation will finally fail if project viewer tries to create a pod

Expected results:
3. console should not show 'Create Pod Disruption Budget' button for a project viewer

Additional info:
For comparison: we doesn't show resource creation button('Create xxx' button) on other workloads list page for a project viewer, such as Deployments, DeploymentConfigs list etc

Description of problem:
If cluster install failed and no tag attached to vm, run ./openshift-install destroy cluster get stuck, details pls see openshift-install.log
...
time="2022-09-28T08:19:14-04:00" level=debug msg="Delete Folder"
time="2022-09-28T08:19:14-04:00" level=debug msg="Find attached Folder on tag"
time="2022-09-28T08:19:15-04:00" level=debug msg="Folder: Expected Folder sgao-rtf6v to be empty"
time="2022-09-28T08:19:25-04:00" level=debug msg="Power Off Virtual Machines"
time="2022-09-28T08:19:25-04:00" level=debug msg="Find attached VirtualMachine on tag"
time="2022-09-28T08:19:25-04:00" level=debug msg="Delete Virtual Machines"
time="2022-09-28T08:19:25-04:00" level=debug msg="Find attached VirtualMachine on tag"
time="2022-09-28T08:19:25-04:00" level=debug msg="Delete Folder"
time="2022-09-28T08:19:25-04:00" level=debug msg="Find attached Folder on tag"
time="2022-09-28T08:19:25-04:00" level=debug msg="Folder: Expected Folder sgao-rtf6v to be empty"
time="2022-09-28T08:19:35-04:00" level=debug msg="Power Off Virtual Machines"
time="2022-09-28T08:19:35-04:00" level=debug msg="Find attached VirtualMachine on tag"
time="2022-09-28T08:19:35-04:00" level=debug msg="Delete Virtual Machines"
time="2022-09-28T08:19:35-04:00" level=debug msg="Find attached VirtualMachine on tag"
time="2022-09-28T08:19:35-04:00" level=debug msg="Delete Folder"

Version-Release number of selected component (if applicable):
4.12.0-0.nightly-2022-09-25-071630

How reproducible:
always when cluster install failed and no tag attached to vm

Steps to Reproduce:
1. cluster install failed and no tag attached to vm
2. run ./openshift-install destroy cluster
3.

Actual results:
installer destroy get stuck

Expected results:
installer destroy should set timeout and be able to quit in such situation

Additional info:

This is a clone of issue OCPBUGS-3499. The following is the description of the original issue:

Description of problem:

On clusters serving Route via CRD (i.e. MicroShift), Route validation does not perform the same validation as on OCP.

Version-Release number of selected component (if applicable):

 

How reproducible:

Always

Steps to Reproduce:

$ cat<<EOF | oc apply --server-side -f-
apiVersion: route.openshift.io/v1
kind: Route
metadata:
  name: hello-microshift
spec:
  to:
    kind: Service
    name: hello-microshift
EOF

route.route.openshift.io/hello-microshift serverside-applied

$ oc get route hello-microshift -o yaml

apiVersion: route.openshift.io/v1
kind: Route
metadata:
  annotations:
    openshift.io/host.generated: "true"
  creationTimestamp: "2022-11-11T23:53:33Z"
  generation: 1
  name: hello-microshift
  namespace: default
  resourceVersion: "2659"
  uid: cd35cd20-b3fd-4d50-9912-f34b3935acfd
spec:
  host: hello-microshift-default.cluster.local
  to:
    kind: Service
    name: hello-microshift
  wildcardPolicy: None

$ cat<<EOF | oc apply --server-side -f-
apiVersion: route.openshift.io/v1
kind: Route
metadata:
  name: hello-microshift
spec:
  to:
    kind: Service
    name: hello-microshift
  wildcardPolicy: ""
EOF

Actual results:

route.route.openshift.io/hello-microshift serverside-applied

Expected results:

The Route "hello-microshift" is invalid: spec.wildcardPolicy: Invalid value: "": field is immutable 

Additional info:

** This change will be inert on OCP, which already has the correct behavior. **

 

In 4.12.0-rc.0 some API-server components declare flowcontrol/v1beta1 release manifests:

$ oc adm release extract --to manifests quay.io/openshift-release-dev/ocp-release:4.12.0-rc.0-x86_64
$ grep -r flowcontrol.apiserver.k8s.io manifests
manifests/0000_50_cluster-authentication-operator_09_flowschema.yaml:apiVersion: flowcontrol.apiserver.k8s.io/v1beta1
manifests/0000_50_cluster-authentication-operator_09_flowschema.yaml:apiVersion: flowcontrol.apiserver.k8s.io/v1beta1
manifests/0000_50_cluster-authentication-operator_09_flowschema.yaml:apiVersion: flowcontrol.apiserver.k8s.io/v1beta1
manifests/0000_50_cluster-authentication-operator_09_flowschema.yaml:apiVersion: flowcontrol.apiserver.k8s.io/v1beta1
manifests/0000_20_etcd-operator_10_flowschema.yaml:apiVersion: flowcontrol.apiserver.k8s.io/v1beta1
manifests/0000_20_kube-apiserver-operator_08_flowschema.yaml:apiVersion: flowcontrol.apiserver.k8s.io/v1beta1
manifests/0000_20_kube-apiserver-operator_08_flowschema.yaml:apiVersion: flowcontrol.apiserver.k8s.io/v1beta1
manifests/0000_20_kube-apiserver-operator_08_flowschema.yaml:apiVersion: flowcontrol.apiserver.k8s.io/v1beta1
manifests/0000_50_cluster-openshift-apiserver-operator_09_flowschema.yaml:apiVersion: flowcontrol.apiserver.k8s.io/v1beta1
manifests/0000_50_cluster-openshift-apiserver-operator_09_flowschema.yaml:apiVersion: flowcontrol.apiserver.k8s.io/v1beta1
manifests/0000_50_cluster-openshift-apiserver-operator_09_flowschema.yaml:apiVersion: flowcontrol.apiserver.k8s.io/v1beta1
manifests/0000_50_cluster-openshift-controller-manager-operator_10_flowschema.yaml:apiVersion: flowcontrol.apiserver.k8s.io/v1beta1

The APIs are scheduled for removal in Kube 1.26, which will ship with OpenShift 4.13. We want the 4.12 CVO to move to modern APIs in 4.12, so the APIRemovedInNext.*ReleaseInUse alerts are not firing on 4.12. This ticket tracks removing those manifests, or replacing them with a more modern resource type, or some such. Definition of done is that new 4.13 (and with backports, 4.12) nightlies no longer include flowcontrol.apiserver.k8s.io/v1beta1 manifests.

This can be noticed in https://gcsweb-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/origin-ci-test/pr-logs/pull/27560/pull-ci-openshift-origin-master-e2e-gcp-ovn/1593697975584952320/artifacts/e2e-gcp-ovn/openshift-e2e-test/build-log.txt:

[It] clients should not use APIs that are removed in upcoming releases [apigroup:config.openshift.io] [Suite:openshift/conformance/parallel]
  github.com/openshift/origin/test/extended/apiserver/api_requests.go:27
Nov 18 21:59:06.261: INFO: api flowschemas.v1beta1.flowcontrol.apiserver.k8s.io, removed in release 1.26, was accessed 254 times
Nov 18 21:59:06.261: INFO: api horizontalpodautoscalers.v2beta2.autoscaling, removed in release 1.26, was accessed 10 times
Nov 18 21:59:06.261: INFO: api prioritylevelconfigurations.v1beta1.flowcontrol.apiserver.k8s.io, removed in release 1.26, was accessed 22 times
Nov 18 21:59:06.261: INFO: user/system:serviceaccount:openshift-cluster-version:default accessed flowschemas.v1beta1.flowcontrol.apiserver.k8s.io 224 times
Nov 18 21:59:06.261: INFO: user/system:serviceaccount:openshift-cluster-version:default accessed prioritylevelconfigurations.v1beta1.flowcontrol.apiserver.k8s.io 22 times
Nov 18 21:59:06.261: INFO: user/system:serviceaccount:openshift-kube-storage-version-migrator:kube-storage-version-migrator-sa accessed flowschemas.v1beta1.flowcontrol.apiserver.k8s.io 16 times
Nov 18 21:59:06.261: INFO: user/system:admin accessed flowschemas.v1beta1.flowcontrol.apiserver.k8s.io 14 times
Nov 18 21:59:06.261: INFO: user/system:serviceaccount:openshift-monitoring:kube-state-metrics accessed horizontalpodautoscalers.v2beta2.autoscaling 10 times
Nov 18 21:59:06.261: INFO: api flowschemas.v1beta1.flowcontrol.apiserver.k8s.io, removed in release 1.26, was accessed 254 times
api horizontalpodautoscalers.v2beta2.autoscaling, removed in release 1.26, was accessed 10 times
api prioritylevelconfigurations.v1beta1.flowcontrol.apiserver.k8s.io, removed in release 1.26, was accessed 22 times
user/system:admin accessed flowschemas.v1beta1.flowcontrol.apiserver.k8s.io 14 times
user/system:serviceaccount:openshift-cluster-version:default accessed flowschemas.v1beta1.flowcontrol.apiserver.k8s.io 224 times
user/system:serviceaccount:openshift-cluster-version:default accessed prioritylevelconfigurations.v1beta1.flowcontrol.apiserver.k8s.io 22 times
user/system:serviceaccount:openshift-kube-storage-version-migrator:kube-storage-version-migrator-sa accessed flowschemas.v1beta1.flowcontrol.apiserver.k8s.io 16 times
user/system:serviceaccount:openshift-monitoring:kube-state-metrics accessed horizontalpodautoscalers.v2beta2.autoscaling 10 times
Nov 18 21:59:06.261: INFO: api flowschemas.v1beta1.flowcontrol.apiserver.k8s.io, removed in release 1.26, was accessed 254 times
api horizontalpodautoscalers.v2beta2.autoscaling, removed in release 1.26, was accessed 10 times
api prioritylevelconfigurations.v1beta1.flowcontrol.apiserver.k8s.io, removed in release 1.26, was accessed 22 times
user/system:admin accessed flowschemas.v1beta1.flowcontrol.apiserver.k8s.io 14 times
user/system:serviceaccount:openshift-cluster-version:default accessed flowschemas.v1beta1.flowcontrol.apiserver.k8s.io 224 times
user/system:serviceaccount:openshift-cluster-version:default accessed prioritylevelconfigurations.v1beta1.flowcontrol.apiserver.k8s.io 22 times
user/system:serviceaccount:openshift-kube-storage-version-migrator:kube-storage-version-migrator-sa accessed flowschemas.v1beta1.flowcontrol.apiserver.k8s.io 16 times
user/system:serviceaccount:openshift-monitoring:kube-state-metrics accessed horizontalpodautoscalers.v2beta2.autoscaling 10 times
[AfterEach] [sig-arch][Late]
  github.com/openshift/origin/test/extended/util/client.go:158
[AfterEach] [sig-arch][Late]
  github.com/openshift/origin/test/extended/util/client.go:159
flake: api flowschemas.v1beta1.flowcontrol.apiserver.k8s.io, removed in release 1.26, was accessed 254 times
api horizontalpodautoscalers.v2beta2.autoscaling, removed in release 1.26, was accessed 10 times
api prioritylevelconfigurations.v1beta1.flowcontrol.apiserver.k8s.io, removed in release 1.26, was accessed 22 times
user/system:admin accessed flowschemas.v1beta1.flowcontrol.apiserver.k8s.io 14 times
user/system:serviceaccount:openshift-cluster-version:default accessed flowschemas.v1beta1.flowcontrol.apiserver.k8s.io 224 times
user/system:serviceaccount:openshift-cluster-version:default accessed prioritylevelconfigurations.v1beta1.flowcontrol.apiserver.k8s.io 22 times
user/system:serviceaccount:openshift-kube-storage-version-migrator:kube-storage-version-migrator-sa accessed flowschemas.v1beta1.flowcontrol.apiserver.k8s.io 16 times
user/system:serviceaccount:openshift-monitoring:kube-state-metrics accessed horizontalpodautoscalers.v2beta2.autoscaling 10 times
Ginkgo exit error 4: exit with code 4

This is required to unblock https://github.com/openshift/origin/pull/27561

This is a clone of issue OCPBUGS-4700. The following is the description of the original issue:

Description of problem:

In at least 4.12.0-rc.0, a user with read-only access to ClusterVersion can see an "Update blocked" pop-up talking about "...alert above the visualization...".  It is referencing a banner about "This cluster should not be updated to the next minor version...", but that banner is not displayed because hasPermissionsToUpdate is false, so canPerformUpgrade is false.

Version-Release number of selected component (if applicable):

4.12.0-rc.0. Likely more. I haven't traced it out.

How reproducible:

Always.

Steps to Reproduce:

1. Install 4.12.0-rc.0
2. Create a user with cluster-wide read-only permissions. For me, it's via binding to a sudoer ClusterRole. I'm not sure where that ClusterRole comes from, but it's:

$ oc get -o yaml clusterrole sudoer
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  annotations:
    rbac.authorization.kubernetes.io/autoupdate: "true"
  creationTimestamp: "2020-05-21T19:39:09Z"
  name: sudoer
  resourceVersion: "7715"
  uid: 28eb2ffa-dccd-47e8-a2d5-6a95e0e8b1e9
rules:
- apiGroups:
  - ""
  - user.openshift.io
  resourceNames:
  - system:admin
  resources:
  - systemusers
  - users
  verbs:
  - impersonate
- apiGroups:
  - ""
  - user.openshift.io
  resourceNames:
  - system:masters
  resources:
  - groups
  - systemgroups
  verbs:
  - impersonate

3. View /settings/cluster

Actual results:

See the "Update blocked" pop-up talking about "...alert above the visualization...".

Expected results:

Something more internally consistent. E.g. having the referenced banner "...alert above the visualization..." show up, or not having the "Update blocked" pop-up reference the non-existent banner.

This is a clone of issue OCPBUGS-6270. The following is the description of the original issue:

Similar to how, due to the install-config validation, the baremetal platform previously required a bunch of fields that are actually ignored (OCPBUGS-3278), we similarly require values for the following fields in the platform.vsphere section:

  • vCenter
  • username
  • password
  • datacenter
  • defaultDatastore

None of these values are actually used in the agent-based installer at present, and they should not be required.

Users can work around this by specifying dummy values in the platform config (note that the VIP values are required and must be genuine):

platform:
  vsphere:
    apiVIP: 192.168.111.1
    ingressVIP: 192.168.111.2
    vCenter: a
    username: b
    password: c
    datacenter: d
    defaultDatastore: e

This relates to the recovery of a cluster following an etcd outage.

The ingress path to kube-apiserver is:

───────────> VIP ─────────────────> Local HAProxy ────┬─> kube-apiserver-master-0
    (managed by keepalived)                           │
                                                      ├─> kube-apiserver-master-1
                                                      │
                                                      └─> kube-apiserver-master-2

Each master is running an HAProxy which load balances between the 3 kube-apiservers. Each HAProxy is running health checks against each kube-apiserver, and will add or remove it from the available pool based on its health.

We only use keepalived to ensure that HAProxy is not a single point of failure. It is the job of keepalived to ensure that incoming traffic is being directed to an HAProxy which is functioning correctly.

The current health check we are using for keepalived involves polling /readyz against the local HAProxy. While this seems intuitively correct it is in fact testing the wrong thing. It is testing whether the kube-apiserver it connects to is functioning correctly. However, this is not the purpose of keepalived. HAProxy runs health checks against kube-apiserver backends. keepalived simply selects a correctly functioning HAProxy.

This becomes important during recovery from an outage. When none of the kube-apiservers are healthy this health check will fail continuously, and the API VIP will move uselessly between masters. However the situation is much worse when only one of the kube-apiservers is up. In this case there is a high probability that it is overloaded and at least rate limiting incoming connections. This may lead us to fail the keepalived health check and fail the VIP over to the next HAProxy. This will cause all open kube-apiserver connections to reset, even the established ones. This increases the load on the kube-apiserver and increases the probability that the health check will fail again.

Ideally the keepalived health check would check only the health of HAProxy itself, not the health of the pool of kube-apiservers. In practise it will probably never be necessary to move the VIP while the master is up, regardless of the health of the cluster. A network partition affecting HAProxy would already be handled by VRRP between the masters, so it may be that it would be sufficient to check that the local HAProxy pod is healthy.

Description of problem:

Upgrade OCP 4.11 --> 4.12 fails with one 'NotReady,SchedulingDisabled' node and MachineConfigDaemonFailed.

Version-Release number of selected component (if applicable):

Upgrade from OCP 4.11.0-0.nightly-2022-09-19-214532 on top of OSP RHOS-16.2-RHEL-8-20220804.n.1 to 4.12.0-0.nightly-2022-09-20-040107.

Network Type: OVNKubernetes

How reproducible:

Twice out of two attempts.

Steps to Reproduce:

1. Install OCP 4.11.0-0.nightly-2022-09-19-214532 (IPI) on top of OSP RHOS-16.2-RHEL-8-20220804.n.1.
   The cluster is up and running with three workers:
   $ oc get clusterversion
   NAME      VERSION                              AVAILABLE   PROGRESSING   SINCE   STATUS
   version   4.11.0-0.nightly-2022-09-19-214532   True        False         51m     Cluster version is 4.11.0-0.nightly-2022-09-19-214532

2. Run the OC command to upgrade to 4.12.0-0.nightly-2022-09-20-040107:
$ oc adm upgrade --to-image=registry.ci.openshift.org/ocp/release:4.12.0-0.nightly-2022-09-20-040107 --allow-explicit-upgrade --force=true
warning: Using by-tag pull specs is dangerous, and while we still allow it in combination with --force for backward compatibility, it would be much safer to pass a by-digest pull spec instead
warning: The requested upgrade image is not one of the available updates.You have used --allow-explicit-upgrade for the update to proceed anyway
warning: --force overrides cluster verification of your supplied release image and waives any update precondition failures.
Requesting update to release image registry.ci.openshift.org/ocp/release:4.12.0-0.nightly-2022-09-20-040107 

3. The upgrade is not succeeds: [0]
$ oc get clusterversion
NAME      VERSION                              AVAILABLE   PROGRESSING   SINCE   STATUS
version   4.11.0-0.nightly-2022-09-19-214532   True        True          17h     Unable to apply 4.12.0-0.nightly-2022-09-20-040107: wait has exceeded 40 minutes for these operators: network

One node degrided to 'NotReady,SchedulingDisabled' status:
$ oc get nodes
NAME                          STATUS                        ROLES    AGE   VERSION
ostest-9vllk-master-0         Ready                         master   19h   v1.24.0+07c9eb7
ostest-9vllk-master-1         Ready                         master   19h   v1.24.0+07c9eb7
ostest-9vllk-master-2         Ready                         master   19h   v1.24.0+07c9eb7
ostest-9vllk-worker-0-4x4pt   NotReady,SchedulingDisabled   worker   18h   v1.24.0+3882f8f
ostest-9vllk-worker-0-h6kcs   Ready                         worker   18h   v1.24.0+3882f8f
ostest-9vllk-worker-0-xhz9b   Ready                         worker   18h   v1.24.0+3882f8f

$ oc get pods -A | grep -v -e Completed -e Running
NAMESPACE                                          NAME                                                         READY   STATUS      RESTARTS       AGE
openshift-openstack-infra                          coredns-ostest-9vllk-worker-0-4x4pt                          0/2     Init:0/1    0              18h
 
$ oc get events
LAST SEEN   TYPE      REASON                                        OBJECT            MESSAGE
7m15s       Warning   OperatorDegraded: MachineConfigDaemonFailed   /machine-config   Unable to apply 4.12.0-0.nightly-2022-09-20-040107: failed to apply machine config daemon manifests: error during waitForDaemonsetRollout: [timed out waiting for the condition, daemonset machine-config-daemon is not ready. status: (desired: 6, updated: 6, ready: 5, unavailable: 1)]
7m15s       Warning   MachineConfigDaemonFailed                     /machine-config   Cluster not available for [{operator 4.11.0-0.nightly-2022-09-19-214532}]: failed to apply machine config daemon manifests: error during waitForDaemonsetRollout: [timed out waiting for the condition, daemonset machine-config-daemon is not ready. status: (desired: 6, updated: 6, ready: 5, unavailable: 1)]

$ oc get co
NAME                                       VERSION                              AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
authentication                             4.12.0-0.nightly-2022-09-20-040107   True        False         False      18h    
baremetal                                  4.12.0-0.nightly-2022-09-20-040107   True        False         False      19h    
cloud-controller-manager                   4.12.0-0.nightly-2022-09-20-040107   True        False         False      19h    
cloud-credential                           4.12.0-0.nightly-2022-09-20-040107   True        False         False      19h    
cluster-autoscaler                         4.12.0-0.nightly-2022-09-20-040107   True        False         False      19h    
config-operator                            4.12.0-0.nightly-2022-09-20-040107   True        False         False      19h    
console                                    4.12.0-0.nightly-2022-09-20-040107   True        False         False      18h    
control-plane-machine-set                  4.12.0-0.nightly-2022-09-20-040107   True        False         False      17h    
csi-snapshot-controller                    4.12.0-0.nightly-2022-09-20-040107   True        False         False      19h    
dns                                        4.12.0-0.nightly-2022-09-20-040107   True        True          False      19h     DNS "default" reports Progressing=True: "Have 5 available node-resolver pods, want 6."
etcd                                       4.12.0-0.nightly-2022-09-20-040107   True        False         False      19h    
image-registry                             4.12.0-0.nightly-2022-09-20-040107   True        True          False      18h     Progressing: The registry is ready...
ingress                                    4.12.0-0.nightly-2022-09-20-040107   True        False         False      18h    
insights                                   4.12.0-0.nightly-2022-09-20-040107   True        False         False      19h    
kube-apiserver                             4.12.0-0.nightly-2022-09-20-040107   True        True          False      18h     NodeInstallerProgressing: 1 nodes are at revision 11; 2 nodes are at revision 13
kube-controller-manager                    4.12.0-0.nightly-2022-09-20-040107   True        False         False      19h    
kube-scheduler                             4.12.0-0.nightly-2022-09-20-040107   True        False         False      19h    
kube-storage-version-migrator              4.12.0-0.nightly-2022-09-20-040107   True        False         False      19h    
machine-api                                4.12.0-0.nightly-2022-09-20-040107   True        False         False      19h    
machine-approver                           4.12.0-0.nightly-2022-09-20-040107   True        False         False      19h    
machine-config                             4.11.0-0.nightly-2022-09-19-214532   False       True          True       16h     Cluster not available for [{operator 4.11.0-0.nightly-2022-09-19-214532}]: failed to apply machine config daemon manifests: error during waitForDaemonsetRollout: [timed out waiting for the condition, daemonset machine-config-daemon is not ready. status: (desired: 6, updated: 6, ready: 5, unavailable: 1)]
marketplace                                4.12.0-0.nightly-2022-09-20-040107   True        False         False      19h    
monitoring                                 4.12.0-0.nightly-2022-09-20-040107   True        False         False      18h    
network                                    4.12.0-0.nightly-2022-09-20-040107   True        True          True       19h     DaemonSet "/openshift-ovn-kubernetes/ovnkube-node" rollout is not making progress - last change 2022-09-20T14:16:13Z...
node-tuning                                4.12.0-0.nightly-2022-09-20-040107   True        False         False      17h    
openshift-apiserver                        4.12.0-0.nightly-2022-09-20-040107   True        False         False      18h    
openshift-controller-manager               4.12.0-0.nightly-2022-09-20-040107   True        False         False      17h    
openshift-samples                          4.12.0-0.nightly-2022-09-20-040107   True        False         False      17h    
operator-lifecycle-manager                 4.12.0-0.nightly-2022-09-20-040107   True        False         False      19h    
operator-lifecycle-manager-catalog         4.12.0-0.nightly-2022-09-20-040107   True        False         False      19h    
operator-lifecycle-manager-packageserver   4.12.0-0.nightly-2022-09-20-040107   True        False         False      19h    
service-ca                                 4.12.0-0.nightly-2022-09-20-040107   True        False         False      19h    
storage                                    4.12.0-0.nightly-2022-09-20-040107   True        True          False      19h     ManilaCSIDriverOperatorCRProgressing: ManilaDriverNodeServiceControllerProgressing: Waiting for DaemonSet to deploy node pods...

[0] http://pastebin.test.redhat.com/1074531

Actual results:

OCP 4.11 --> 4.12 upgrade fails.

Expected results:

OCP 4.11 --> 4.12 upgrade success.

Additional info:

Attached logs of the NotReady node - [^journalctl_ostest-9vllk-worker-0-4x4pt.log.tar.gz]

This is a clone of issue OCPBUGS-95. The following is the description of the original issue:

In an OpenShift cluster with OpenShiftSDN network plugin with egressIP and NMstate operator configured, there are some conditions when the egressIP is deconfigured from the network interface.

 

The bug is 100% reproducible.

Steps for reproducing the issue are:

1. Install a cluster with OpenShiftSDN network plugin.

2. Configure egressip for a project.

3. Install NMstate operator.

4. Create a NodeNetworkConfigurationPolicy.

5. Identify on which node the egressIP is present.

6. Restart the nmstate-handler pod running on the identified node.

7. Verify that the egressIP is no more present.

Restarting the sdn pod related to the identified node will reconfigure the egressIP in the node.

This issue has a high impact since any changes triggered for the NMstate operator will prevent application traffic. For example, in the customer environment, the issue is triggered any time a new node is added to the cluster.

The expectation is that NMstate operator should not interfere with SDN configuration.

Description of problem:

When scaling down the machineSet for worker nodes, a PV(vmdk) file got deleted.

Version-Release number of selected component (if applicable):

4.10

How reproducible:

N/A

Steps to Reproduce:

1. Scale down worker nodes
2. Check VMware logs and VM gets deleted with vmdk still attached

Actual results:

After scaling down nodes, volumes still attached to the VM get deleted alongside the VM

Expected results:

Worker nodes scaled down without any accidental deletion

Additional info:

 

Description of problem:

The service project and the host project both have a private DNS zone named as "ipi-xpn-private-zone". The thing is, although platform.gcp.privateDNSZone.project is set as the host project, the installer checks the zone of the service project, and complains dns name not match. 

Version-Release number of selected component (if applicable):

$ openshift-install version
openshift-install 4.12.0-0.nightly-2022-10-25-210451
built from commit 14d496fdaec571fa97604a487f5df6a0433c0c68
release image registry.ci.openshift.org/ocp/release@sha256:d6cc07402fee12197ca1a8592b5b781f9f9a84b55883f126d60a3896a36a9b74
release architecture amd64

How reproducible:

Always, if both the service project and the host project have a private DNS zone with the same name.

Steps to Reproduce:

1. try IPI installation to a shared VPC, using "privateDNSZone" of the host project

Actual results:

$ openshift-install create cluster --dir test7
INFO Credentials loaded from file "/home/fedora/.gcp/osServiceAccount.json" 
ERROR failed to fetch Metadata: failed to load asset "Install Config": failed to create install config: platform.gcp.privateManagedZone: Invalid value: "ipi-xpn-private-zone": dns zone jiwei-1026a.qe1.gcp.devcluster.openshift.com. did not match expected jiwei-1027a.qe-shared-vpc.qe.gcp.devcluster.openshift.com 
$ 

Expected results:

The installer should check the private zone in the specified project (i.e. the host project).

Additional info:

$ yq-3.3.0 r test7/install-config.yaml platform
gcp:
  projectID: openshift-qe
  region: us-central1
  computeSubnet: installer-shared-vpc-subnet-2
  controlPlaneSubnet: installer-shared-vpc-subnet-1
  createFirewallRules: Disabled
  publicDNSZone:
    id: qe-shared-vpc
    project: openshift-qe-shared-vpc
  privateDNSZone:
    id: ipi-xpn-private-zone
    project: openshift-qe-shared-vpc
  network: installer-shared-vpc
  networkProjectID: openshift-qe-shared-vpc
$ yq-3.3.0 r test7/install-config.yaml baseDomain
qe-shared-vpc.qe.gcp.devcluster.openshift.com
$ yq-3.3.0 r test7/install-config.yaml metadata
creationTimestamp: null
name: jiwei-1027a
$ 
$ openshift-install create cluster --dir test7
INFO Credentials loaded from file "/home/fedora/.gcp/osServiceAccount.json" 
ERROR failed to fetch Metadata: failed to load asset "Install Config": failed to create install config: platform.gcp.privateManagedZone: Invalid value: "ipi-xpn-private-zone": dns zone jiwei-1026a.qe1.gcp.devcluster.openshift.com. did not match expected jiwei-1027a.qe-shared-vpc.qe.gcp.devcluster.openshift.com 
$ 
$ gcloud --project openshift-qe-shared-vpc dns managed-zones list --filter='name=qe-shared-vpc'
NAME           DNS_NAME                                        DESCRIPTION  VISIBILITY
qe-shared-vpc  qe-shared-vpc.qe.gcp.devcluster.openshift.com.               public
$ gcloud --project openshift-qe-shared-vpc dns managed-zones list --filter='name=ipi-xpn-private-zone'
NAME                  DNS_NAME                                                    DESCRIPTION                         VISIBILITY
ipi-xpn-private-zone  jiwei-1027a.qe-shared-vpc.qe.gcp.devcluster.openshift.com.  Preserved private zone for IPI XPN  private
$ gcloud dns managed-zones list --filter='name=ipi-xpn-private-zone'
NAME                  DNS_NAME                                       DESCRIPTION                         VISIBILITY
ipi-xpn-private-zone  jiwei-1026a.qe1.gcp.devcluster.openshift.com.  Preserved private zone for IPI XPN  private
$ 
$ gcloud --project openshift-qe-shared-vpc dns managed-zones describe qe-shared-vpc
cloudLoggingConfig:
  kind: dns#managedZoneCloudLoggingConfig
creationTime: '2020-04-26T02:50:25.172Z'
description: ''
dnsName: qe-shared-vpc.qe.gcp.devcluster.openshift.com.
id: '7036327024919173373'
kind: dns#managedZone
name: qe-shared-vpc
nameServers:
- ns-cloud-b1.googledomains.com.
- ns-cloud-b2.googledomains.com.
- ns-cloud-b3.googledomains.com.
- ns-cloud-b4.googledomains.com.
visibility: public
$ 
$ gcloud --project openshift-qe-shared-vpc dns managed-zones describe ipi-xpn-private-zone         
cloudLoggingConfig:
  kind: dns#managedZoneCloudLoggingConfig
creationTime: '2022-10-27T08:05:18.332Z'
description: Preserved private zone for IPI XPN
dnsName: jiwei-1027a.qe-shared-vpc.qe.gcp.devcluster.openshift.com.
id: '5506116785330943369'
kind: dns#managedZone
name: ipi-xpn-private-zone
nameServers:
- ns-gcp-private.googledomains.com.
privateVisibilityConfig:
  kind: dns#managedZonePrivateVisibilityConfig
  networks:
  - kind: dns#managedZonePrivateVisibilityConfigNetwork
    networkUrl: https://www.googleapis.com/compute/v1/projects/openshift-qe-shared-vpc/global/networks/installer-shared-vpc
visibility: private
$ 
$ gcloud dns managed-zones describe ipi-xpn-private-zone
cloudLoggingConfig:
  kind: dns#managedZoneCloudLoggingConfig
creationTime: '2022-10-26T06:42:52.268Z'
description: Preserved private zone for IPI XPN
dnsName: jiwei-1026a.qe1.gcp.devcluster.openshift.com.
id: '7663537481778983285'
kind: dns#managedZone
name: ipi-xpn-private-zone
nameServers:
- ns-gcp-private.googledomains.com.
privateVisibilityConfig:
  kind: dns#managedZonePrivateVisibilityConfig
  networks:
  - kind: dns#managedZonePrivateVisibilityConfigNetwork
    networkUrl: https://www.googleapis.com/compute/v1/projects/openshift-qe-shared-vpc/global/networks/installer-shared-vpc
visibility: private
$ 

 

 

This is a clone of issue OCPBUGS-4089. The following is the description of the original issue:

The kube-state-metric pod inside the openshift-monitoring namespace is not running as expected.

On checking the logs I am able to see that there is a memory panic

~~~
2022-11-22T09:57:17.901790234Z I1122 09:57:17.901768 1 main.go:199] Starting kube-state-metrics self metrics server: 127.0.0.1:8082
2022-11-22T09:57:17.901975837Z I1122 09:57:17.901951 1 main.go:66] levelinfomsgTLS is disabled.http2false
2022-11-22T09:57:17.902389844Z I1122 09:57:17.902291 1 main.go:210] Starting metrics server: 127.0.0.1:8081
2022-11-22T09:57:17.903191857Z I1122 09:57:17.903133 1 main.go:66] levelinfomsgTLS is disabled.http2false
2022-11-22T09:57:17.906272505Z I1122 09:57:17.906224 1 builder.go:191] Active resources: certificatesigningrequests,configmaps,cronjobs,daemonsets,deployments,endpoints,horizontalpodautoscalers,ingresses,jobs,leases,limitranges,mutatingwebhookconfigurations,namespaces,networkpolicies,nodes,persistentvolumeclaims,persistentvolumes,poddisruptionbudgets,pods,replicasets,replicationcontrollers,resourcequotas,secrets,services,statefulsets,storageclasses,validatingwebhookconfigurations,volumeattachments
2022-11-22T09:57:17.917758187Z E1122 09:57:17.917560 1 runtime.go:78] Observed a panic: "invalid memory address or nil pointer dereference" (runtime error: invalid memory address or nil pointer dereference)
2022-11-22T09:57:17.917758187Z goroutine 24 [running]:
2022-11-22T09:57:17.917758187Z k8s.io/apimachinery/pkg/util/runtime.logPanic(

{0x1635600, 0x2696e10})
2022-11-22T09:57:17.917758187Z /go/src/k8s.io/kube-state-metrics/vendor/k8s.io/apimachinery/pkg/util/runtime/runtime.go:74 +0x7d
2022-11-22T09:57:17.917758187Z k8s.io/apimachinery/pkg/util/runtime.HandleCrash({0x0, 0x0, 0xfffffffe})
2022-11-22T09:57:17.917758187Z /go/src/k8s.io/kube-state-metrics/vendor/k8s.io/apimachinery/pkg/util/runtime/runtime.go:48 +0x75
2022-11-22T09:57:17.917758187Z panic({0x1635600, 0x2696e10}

)
2022-11-22T09:57:17.917758187Z /usr/lib/golang/src/runtime/panic.go:1038 +0x215
2022-11-22T09:57:17.917758187Z k8s.io/kube-state-metrics/v2/internal/store.ingressMetricFamilies.func6(0x40)
2022-11-22T09:57:17.917758187Z /go/src/k8s.io/kube-state-metrics/internal/store/ingress.go:136 +0x189
2022-11-22T09:57:17.917758187Z k8s.io/kube-state-metrics/v2/internal/store.wrapIngressFunc.func1(

{0x17fe520, 0xc00063b590})
2022-11-22T09:57:17.917758187Z /go/src/k8s.io/kube-state-metrics/internal/store/ingress.go:175 +0x49
2022-11-22T09:57:17.917758187Z k8s.io/kube-state-metrics/v2/pkg/metric_generator.(*FamilyGenerator).Generate(...)
2022-11-22T09:57:17.917758187Z /go/src/k8s.io/kube-state-metrics/pkg/metric_generator/generator.go:67
2022-11-22T09:57:17.917758187Z k8s.io/kube-state-metrics/v2/pkg/metric_generator.ComposeMetricGenFuncs.func1({0x17fe520, 0xc00063b590}

)
2022-11-22T09:57:17.917758187Z /go/src/k8s.io/kube-state-metrics/pkg/metric_generator/generator.go:107 +0xd8
~~~

Logs are attached to the support case

This is a clone of issue OCPBUGS-1805. The following is the description of the original issue:

The vSphere CSI cloud.conf lists the single datacenter from platform workspace config but in a multi-zone setup (https://github.com/openshift/enhancements/pull/918 ) there may be more than the one datacenter.

This issue is resulting in PVs failing to attach because the virtual machines can't be find in any other datacenter. For example:

0s Warning FailedAttachVolume pod/image-registry-85b5d5db54-m78vp AttachVolume.Attach failed for volume "pvc-ab1a0611-cb3b-418d-bb3b-1e7bbe2a69ed" : rpc error: code = Internal desc = failed to find VirtualMachine for node:"rbost-zonal-ghxp2-worker-3-xm7gw". Error: virtual machine wasn't found  

The machine above lives in datacenter-2 but the CSI cloud.conf is only aware of the datacenter IBMCloud.

$ oc get cm vsphere-csi-config -o yaml  -n openshift-cluster-csi-drivers | grep datacenters
    datacenters = "IBMCloud" 

 

This is a clone of issue OCPBUGS-5458. The following is the description of the original issue:

reported in https://coreos.slack.com/archives/C027U68LP/p1673010878672479

Description of problem:

Hey guys, I have a openshift cluster that was upgraded to version 4.9.58 from version 4.8. After the upgrade was done, the etcd pod on master1 isn't coming up and is crashlooping. and it gives the following error: {"level":"fatal","ts":"2023-01-06T12:12:58.709Z","caller":"etcdmain/etcd.go:204","msg":"discovery failed","error":"wal: max entry size limit exceeded, recBytes: 13279, fileSize(313430016) - offset(313418480) - padBytes(1) = entryLimit(11535)","stacktrace":"go.etcd.io/etcd/server/v3/etcdmain.startEtcdOrProxyV2\n\t/remote-source/cachito-gomod-with-deps/app/server/etcdmain/etcd.go:204\ngo.etcd.io/etcd/server/v3/etcdmain.Main\n\t/remote-source/cachito-gomod-with-deps/app/server/etcdmain/main.go:40\nmain.main\n\t/remote-source/cachito-gomod-with-deps/app/server/main.go:32\nruntime.main\n\t/usr/lib/golang/src/runtime/proc.go:225"}

Version-Release number of selected component (if applicable):


How reproducible:


Steps to Reproduce:

1.
2.
3.

Actual results:


Expected results:


Additional info:


This is a clone of issue OCPBUGS-723. The following is the description of the original issue:

Description of problem:
I have a customer who created clusterquota for one of the namespace, it got created but the values were not reflecting under limits or not displaying namespace details.
~~~
$ oc describe AppliedClusterResourceQuota
Name: test-clusterquota
Created: 19 minutes ago
Labels: size=custom
Annotations: <none>
Namespace Selector: []
Label Selector:
AnnotationSelector: map[openshift.io/requester:system:serviceaccount:application-service-accounts:test-sa]
Scopes: NotTerminating
Resource Used Hard
-------- ---- ----
~~~

WORKAROUND: They recreated the clusterquota object (cache it off, delete it, create new) after which it displayed values as expected.

In the past, they saw similar behavior on their test cluster, there it was heavily utilized the etcd DB was much larger in size (>2.5Gi), and had many more objects (at that time, helm secrets were being cached for all deployments, and keeping a history of 10, so etcd was being bombarded).

This cluster the same "symptom" was noticed however etcd was nowhere near that in size nor the amount of etcd objects and/or helm cached secrets.

Version-Release number of selected component (if applicable): OCP 4.9

How reproducible: Occurred only twice(once in test and in current cluster)

Steps to Reproduce:
1. Create ClusterQuota
2. Check AppliedClusterResourceQuota
3. The values and namespace is empty

Actual results: ClusterQuota should display the values

Expected results: ClusterQuota not displaying values

We rely on the user providing accurate information about the MAC addresses in the agent-config, because at the point we read it we haven't seen the hosts yet. However, if the user gets this wrong then chaos may ensue.

Once inventory is available, we should validate that the user has not:

  • Specified MAC addresses that belong to two different agents in the same host config; nor
  • Specified MAC addresses that belong to the same agent in two different host configs

and fail the install if they have.

Description of problem:

Pod and PDB list page just report "Not found" when no resources found 

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-10-15-094115

How reproducible:

Always

Steps to Reproduce:

1. normal user has a new empty project
2. normal user visit PDB list page via Workloads ->  PodDisruptionBudgets 
3.

Actual results:

2. it just reports 'Not found'

Expected results:

2. for other workloads, it will report "No <resource> found", for example
No HorizontalPodAutoscalers found
No StatefulSets found
No Deployments found

so for Pods and PodDisruptionBudgets list page, when no resource can be found, it's better that we also reports "No pods found" and "No PodDisruptionBudgets found"

Additional info:

 

This is a clone of issue OCPBUGS-2144. The following is the description of the original issue:

Description of problem:

Azure IPI creates boot images using the image gallery API now, it will create two image definition resources for both hyperVGeneration V1 and V2. For arm64 cluster, the architecture in image definition hyperVGeneration V1 is x64, but it should be Arm64

Version-Release number of selected component (if applicable):

./openshift-install version
./openshift-install 4.12.0-0.nightly-arm64-2022-10-07-204251
built from commit 7b739cde1e0239c77fabf7622e15025d32fc272c
release image registry.ci.openshift.org/ocp-arm64/release-arm64@sha256:d2569be4ba276d6474aea016536afbad1ce2e827b3c71ab47010617a537a8b11
release architecture arm64

How reproducible:

always

Steps to Reproduce:

1.Create arm cluster using latest arm64 nightly build 
2.Check image definition created for hyperVGeneration V1

Actual results:

The architecture field is x64.
###
$ az sig image-definition show --gallery-name ${gallery_name} --gallery-image-definition lwanazarm1008-rc8wh --resource-group ${rg} | jq -r ".architecture"
x64
The image version under this image definition is for aarch64.
###
$ az sig image-version show --gallery-name gallery_lwanazarm1008_rc8wh --gallery-image-definition lwanazarm1008-rc8wh --resource-group lwanazarm1008-rc8wh-rg --gallery-image-version 412.86.20220922 | jq -r ".storageProfile.osDiskImage.source"
{  "uri": "https://clustermuygq.blob.core.windows.net/vhd/rhcosmuygq.vhd"}
$ az storage blob show --container-name vhd --name rhcosmuygq.vhd --account-name clustermuygq --account-key $account_key | jq -r ".metadata"
{  "Source_uri": "https://rhcos.blob.core.windows.net/imagebucket/rhcos-412.86.202209220538-0-azure.aarch64.vhd"}

Expected results:

Although no VMs with HypergenV1 can be provisioned, the architecture field should be Arm64 even for hyperGenerationV1 image definitions

Additional info:

1.The architecture in image definition hyperVGeneration V2 is Arm64 and installer will use V2 by default for arm64 vm_type, so installation didn't fail by default. But we still need to make architecture consistent in V1.

2.Need to set architecture field for both V1 and V2, now we only set architecture in V2 image definition resource. 
https://github.com/openshift/installer/blob/master/data/data/azure/vnet/main.tf#L100-L128 

This is a clone of issue OCPBUGS-3621. The following is the description of the original issue:

Description of problem:

EUS-to-EUS upgrade(4.10.38-4.11.13-4.12.0-rc.0), after control-plane nodes are upgraded to 4.12 successfully, unpause the worker pool to get worker nodes updated. But worker nodes failed to be updated with degraded worker pool:
```
# ./oc get node
NAME                                                   STATUS                     ROLES    AGE     VERSION
jliu410-6hmkz-master-0.c.openshift-qe.internal         Ready                      master   4h40m   v1.25.2+f33d98e
jliu410-6hmkz-master-1.c.openshift-qe.internal         Ready                      master   4h40m   v1.25.2+f33d98e
jliu410-6hmkz-master-2.c.openshift-qe.internal         Ready                      master   4h40m   v1.25.2+f33d98e
jliu410-6hmkz-worker-a-xdwvv.c.openshift-qe.internal   Ready,SchedulingDisabled   worker   4h31m   v1.23.12+6b34f32
jliu410-6hmkz-worker-b-9hnb8.c.openshift-qe.internal   Ready                      worker   4h31m   v1.23.12+6b34f32
jliu410-6hmkz-worker-c-bdv4f.c.openshift-qe.internal   Ready                      worker   4h31m   v1.23.12+6b34f32
...
# ./oc get co machine-config
machine-config   4.12.0-rc.0   True        False         True       3h41m   Failed to resync 4.12.0-rc.0 because: error during syncRequiredMachineConfigPools: [timed out waiting for the condition, error pool worker is not ready, retrying. Status: (pool degraded: true total: 3, ready 0, updated: 0, unavailable: 1)]
...
# ./oc get mcp
NAME     CONFIG                                             UPDATED   UPDATING   DEGRADED   MACHINECOUNT   READYMACHINECOUNT   UPDATEDMACHINECOUNT   DEGRADEDMACHINECOUNT   AGE
master   rendered-master-b81233204496767f2fe32fbb6cb088e1   True      False      False      3              3                   3                     0                      4h10m
worker   rendered-worker-a2caae543a144d94c17a27e56038d4c4   False     True       True       3              0                   0                     1                      4h10m
...
# ./oc describe mcp worker
Message:                   Reason:                    Status:                True    Type:                  Degraded    Last Transition Time:  2022-11-14T07:19:42Z    Message:               Node jliu410-6hmkz-worker-a-xdwvv.c.openshift-qe.internal is reporting: "Error checking type of update image: error running skopeo inspect --no-tags --retry-times 5 --authfile /var/lib/kubelet/config.json docker://quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:c01b0ae9870dbee5609c52b4d649334ce6854fff1237f1521929d151f6876daa: exit status 1\ntime=\"2022-11-14T07:42:47Z\" level=fatal msg=\"unknown flag: --no-tags\"\n"    Reason:                1 nodes are reporting degraded status on sync    Status:                True    Type:                  NodeDegraded
...
# ./oc logs machine-config-daemon-mg2zn
E1114 08:11:27.115577  192836 writer.go:200] Marking Degraded due to: Error checking type of update image: error running skopeo inspect --no-tags --retry-times 5 --authfile /var/lib/kubelet/config.json docker://quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:c01b0ae9870dbee5609c52b4d649334ce6854fff1237f1521929d151f6876daa: exit status 1
time="2022-11-14T08:11:25Z" level=fatal msg="unknown flag: --no-tags"
```

Version-Release number of selected component (if applicable):

4.12.0-rc.0

How reproducible:

 

Steps to Reproduce:

1. EUS upgrade with path 4.10.38-> 4.11.13-> 4.12.0-rc.0 with paused worker pool 
2. After master pool upgrade succeed, unpause worker pool 
3.

Actual results:

Worker pool upgrade failed

Expected results:

Worker pool upgrade succeed

Additional info:

 

Description of problem:

 

During ocp multinode spoke cluster creation agent provisioning is stuck on "configuring" because machineConfig service is crashing on the node.
After restarting the service still fails with 

Can't read link "/var/lib/containers/storage/overlay/l/V2OP2CCVMKSOHK2XICC546DUCG" because it does not exist. A storage corruption might have occurred, attempting to recreate the missing symlinks. It might be best wipe the storage to avoid further errors due to storage corruption. 

Version-Release number of selected component (if applicable):

Podman 4.0.2 + 

How reproducible:

sometimes

Steps to Reproduce:

1. deploy multinode spoke (ipxe + boot order )
2.
3.

Actual results:

4 agents in done state and 1 is in "configuring"

 

Expected results:

all agents are in "done" state

Additional info:

issue mentioned in https://github.com/containers/podman/issues/14003

 

Fix: https://github.com/containers/storage/issues/1136

 

 

 

Description of problem:

`create a project` link is enabled for users who do not have permission to create a project. This issue surfaces itself in the developer sandbox.

Version-Release number of selected component (if applicable):

4.11.5

How reproducible:

 

Steps to Reproduce:

1. log into dev sandbox, or a cluster where the user does not have permission to create a project
2. go directly to URL /topology/all-namespaces

Actual results:

`create a project` link is enabled. Upon clicking the link and submitting the form, the project fails to create; as expected.

Expected results:

`create a project` link should only be available to users with the correct permissions.

Additional info:

The project list pages are not directly available to the user in the UI through the project selector. The user must go directly to the URL.

It's possible to encounter this situation when a user logs in with multiple accounts and returns to a previous url.

 

This is a clone of issue OCPBUGS-4997. The following is the description of the original issue:

The fix for OCPBUGS-3382 ensures that we pass the proxy settings from the install-config through to the final cluster. However, nothing in the agent ISO itself uses proxy settings (at least until bootstrapping starts.

It is probably less likely for the agent-based installer that proxies will be needed than e.g. for assisted (where agents running on-prem need to call back to assisted-service in the cloud), but we should be consistent about using any proxy config provided. There may certainly be cases where the registry is only reachable via a proxy.

This can be easily set system-wide by configuring default environment variables in the systemd config. An example (from the bootstrap ignition) is: https://github.com/openshift/installer/blob/master/data/data/bootstrap/files/etc/systemd/system.conf.d/10-default-env.conf.template
Note that current the agent service explicitly overrides these environment variables to be empty, so that will have to be cleared.

Description of problem:

console.openshift.io/use-i18n false in v1alpha API is converted to "" in the v1 APi, which is not a valid value for the enum type declared in the code. 

Version-Release number of selected component (if applicable):

 4.12.0-0.nightly-2022-09-25-071630

How reproducible:

Always

Steps to Reproduce:

1. Load a dynamic plugin with v1alpha API console.openshift.io/use-i18n set to 'false'
2. In the v1 API the {"spec":{"i18n":{"loadType":""}}} loadType is set to empty string, which is not a valid value defined here: https://github.com/jhadvig/api/blob/22d69793277ffeb618d642724515f249262959a5/console/v1/types_console_plugin.go#L46
https://github.com/openshift/api/pull/1186/files# 

Actual results:

{"spec":{"i18n":{"loadType":""}}}

Expected results:

{"spec":{"i18n":{"loadType":"Lazy"}}}

Additional info:

 

Description of problem:

We got a feedback from the support team that it is confusing to see switch in the Notifications column for the Alerting rule which have no alerts associated to it as user can not silence the Alerting rule. 

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1. oc apply -f https://gist.githubusercontent.com/vikram-raj/727629797eb9d9bfcfa2721cae2ade86/raw/7c2305e14115a1a4f4f88ebb74cdad32cbec4132/Alerting%2520rule%2520without%2520alert 
2. navigate to the Developer perspective Observe -> Alerts
3. Try to silence the VersionAlert alerting rule, nothing will happen 

Actual results:

Silence the alerting rule using the switch will do nothing

Expected results:

No switch for silence the alerting rule should be visible if no alerts are associated to the alerting rule.

Additional info:

 

Description of problem:

seeing test failure due to panic in cvo here:

Undiagnosed panic detected in pod expand_less
              0s

                {  pods/openshift-cluster-version_cluster-version-operator-96cf55b5-rffgt_cluster-version-operator_previous.log.gz:E0915 18:38:42.763315       1 runtime.go:79] Observed a panic: "invalid memory address or nil pointer dereference" (runtime error: invalid memory address or nil pointer dereference)
pods/openshift-cluster-version_cluster-version-operator-96cf55b5-rffgt_cluster-version-operator_previous.log.gz:E0915 18:38:42.763418       1 runtime.go:79] Observed a panic: "invalid memory address or nil pointer dereference" (runtime error: invalid memory address or nil pointer dereference)}

full error from logs:

/E0915 18:38:42.763315       1 runtime.go:79] Observed a panic: "invalid memory address or nil pointer dereference" (runtime error: invalid memory address or nil pointer dereference)
goroutine 187 [running]:
k8s.io/apimachinery/pkg/util/runtime.logPanic({0x1934980?, 0x2bc6240})
	/go/src/github.com/openshift/cluster-version-operator/vendor/k8s.io/apimachinery/pkg/util/runtime/runtime.go:75 +0x99
k8s.io/apimachinery/pkg/util/runtime.HandleCrash({0x0, 0x0, 0x4d2604?})
	/go/src/github.com/openshift/cluster-version-operator/vendor/k8s.io/apimachinery/pkg/util/runtime/runtime.go:49 +0x75
panic({0x1934980, 0x2bc6240})
	/usr/lib/golang/src/runtime/panic.go:838 +0x207
github.com/openshift/cluster-version-operator/pkg/cvo.(*SyncWorker).calculateNext(0xc0015c6000, 0xc001df2000)
	/go/src/github.com/openshift/cluster-version-operator/pkg/cvo/sync_worker.go:716 +0x14d
github.com/openshift/cluster-version-operator/pkg/cvo.(*SyncWorker).Start.func1()
	/go/src/github.com/openshift/cluster-version-operator/pkg/cvo/sync_worker.go:575 +0x2a9
k8s.io/apimachinery/pkg/util/wait.BackoffUntil.func1(0x10000000000?)
	/go/src/github.com/openshift/cluster-version-operator/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:155 +0x3e
k8s.io/apimachinery/pkg/util/wait.BackoffUntil(0xc001df2000?, {0x1e44e60, 0xc002739f50}, 0x1, 0xc00058e0c0)
	/go/src/github.com/openshift/cluster-version-operator/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:156 +0xb6
k8s.io/apimachinery/pkg/util/wait.JitterUntil(0x0?, 0x989680, 0x0, 0x60?, 0x0?)
	/go/src/github.com/openshift/cluster-version-operator/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:133 +0x89
k8s.io/apimachinery/pkg/util/wait.Until(...)
	/go/src/github.com/openshift/cluster-version-operator/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:90
github.com/openshift/cluster-version-operator/pkg/cvo.(*SyncWorker).Start(0xc0015c6000?, {0x1e5eb30?, 0xc0000cacc0?}, 0x10?, {0x0?, 0x0?}, {0x0?, 0x0?})
	/go/src/github.com/openshift/cluster-version-operator/pkg/cvo/sync_worker.go:556 +0x145
github.com/openshift/cluster-version-operator/pkg/cvo.(*Operator).Run.func2()
	/go/src/github.com/openshift/cluster-version-operator/pkg/cvo/cvo.go:387 +0x83
created by github.com/openshift/cluster-version-operator/pkg/cvo.(*Operator).Run
	/go/src/github.com/openshift/cluster-version-operator/pkg/cvo/cvo.go:385 +0x4af
E0915 18:38:42.763418       1 runtime.go:79] Observed a panic: "invalid memory address or nil pointer dereference" (runtime error: invalid memory address or nil pointer dereference) 

 

Version-Release number of selected component (if applicable):

 

How reproducible:

currently unsure hit this in a test run, but shouldn't ever panic.

Steps to Reproduce:

1.
2.
3.

Actual results:

panic in cvo pod

Expected results:

no panic in cvo pod

Additional info:

 

This is a clone of issue OCPBUGS-2873. The following is the description of the original issue:

Description of problem:

Prometheus fails to scrape metrics from the storage operator after some time.

Version-Release number of selected component (if applicable):

4.11

How reproducible:

Always

Steps to Reproduce:

1. Install storage operator.
2. Wait for 24h (time for the certificate to be recycled).
3.

Actual results:

Targets being down because Prometheus didn't reload the CA certificate.

Expected results:

Prometheus reloads its client TLS certificate and scrapes the target successfully.

Additional info:


Description of problem:

If you set a services cluster IP to an IP with a leading zero (e.g. 192.168.0.011), ovn-k should normalise this and remove the leading zero before sending it to ovn.

This was seen by me on a CI run executing the k8 test here: test/e2e/network/funny_ips.go +75

you can reproduce using that above test.

Have a read of the text there:

 43 // What are funny IPs:  
 44 // The adjective is because of the curl blog that explains the history and the problem of liberal  
 45 // parsing of IP addresses and the consequences and security risks caused the lack of normalization,
 46 // mainly due to the use of different notations to abuse parsers misalignment to bypass filters.
 47 // xref: https://daniel.haxx.se/blog/2021/04/19/curl-those-funny-ipv4-addresses/   
 48 //     
 49 // Since golang 1.17, IPv4 addresses with leading zeros are rejected by the standard library.
 50 // xref: https://github.com/golang/go/issues/30999
 51 //     
 52 // Because this change on the parsers can cause that previous valid data become invalid, Kubernetes
 53 // forked the old parsers allowing leading zeros on IPv4 address to not break the compatibility.
 54 //     
 55 // Kubernetes interprets leading zeros on IPv4 addresses as decimal, users must not rely on parser
 56 // alignment to not being impacted by the associated security advisory: CVE-2021-29923 golang
 57 // standard library "net" - Improper Input Validation of octal literals in golang 1.16.2 and below
 58 // standard library "net" results in indeterminate SSRF & RFI vulnerabilities. xref:
 59 // https://nvd.nist.gov/vuln/detail/CVE-2021-29923                                                                                                     

northd is logging an error about this also:

|socket_util|ERR|172.30.0.011:7180: bad IP address "172.30.0.011" 
...
2022-08-23T14:14:21.968Z|01839|ovn_util|WARN|bad ip address or port for load balancer key 172.30.0.011:7180

 

Also, I see the error:

E0823 14:14:34.135115    3284 gateway_shared_intf.go:600] Failed to delete conntrack entry for service e2e-funny-ips-8626/funny-ip: failed to delete conntrack entry for service e2e-funny-ips-8626/funny-ip with svcVIP 172.30.0.011, svcPort 7180, protocol TCP: value "<nil>" passed to DeleteConntrack is not an IP address 

We should normalise the IPs before sending to OVN-k. I see also theres conntrack error when trying to set this bad IP.

 

Version-Release number of selected component (if applicable):

How reproducible:

Steps to Reproduce:
1. See above k8 test

Actual results:

Leading zero IP sent to OVN

Expected results:

No leading zero IP sent to OVN

Additional info:

Description of problem:

When log line number is too big, the number will overlap with cut-off line in the log viewer.

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-08-15-150248

How reproducible:

Always

Steps to Reproduce:
1.Go to a pod log page with lots of logs, such as pod in openshift-cluster-version namespace. Check log line numbers.
2.
3.

Actual results:

1. When line number is too big, it will overlap with cut-off line.

Expected results:

1. Should have no overlaps in logs

Additional info:

Derrick got an "old and new refs are equal" on rebase error; this is similar to OCPBUGS-1899 but I think has a different root cause. In this case, when a manual rollback is performed via the bootloader, we've computed that there's an osimageurl diff between the expected and desired state, but actually the desired state is already set.

We just need to skip doing the rebase if we're already in the target state.

(A real root of this problem again is that the whole "current/desired config" thing is trying to track state independently of the bootloader...if we made node state == container image, all of that goes away. The MCO would understand that it got booted into a previous state)

This is a clone of issue OCPBUGS-6175. The following is the description of the original issue:

Description of problem:

When the cluster is configured with Proxy the swift client in the image registry operator is not using the proxy to authenticate with OpenStack, so it's unable to reach the OpenStack API. This issue became evident since recently the support was added to not fallback to cinder in case swift is available[1].

[1]https://github.com/openshift/cluster-image-registry-operator/pull/819

 

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1. Deploy a cluster with proxy and restricted installation
2. 
3.

Actual results:

 

Expected results:

 

Additional info:

 

This is a clone of issue OCPBUGS-8702. The following is the description of the original issue:

This is a clone of issue OCPBUGS-8523. The following is the description of the original issue:

Description of problem:

Due to rpm-ostree regression (OKD-63) MCO was copying /var/lib/kubelet/config.json into /run/ostree/auth.json on FCOS and SCOS. This breaks Assisted Installer flow, which starts with Live ISO and doesn't have /var/lib/kubelet/config.json

Version-Release number of selected component (if applicable):


How reproducible:


Steps to Reproduce:

1.
2.
3.

Actual results:


Expected results:


Additional info:


Description of problem:

When user selects a installed operator (for example, openshift elastic search) in operator hub and navigating to installed operator page from operator information page

with the help of "view it here" option, "404 Not found" information has wrongly shown/appeared although it navigates to the installed operator at the end.

 

Version-Release number of selected components (if applicable):
4.12.0-0.nightly-2022-08-15-150248
How reproducible:

 Always

 

Steps to Reproduce:

  1. Login to OCP web console.
  2. Install Operator, For example,OpenShift Elasticsearch Operator- production operators if missing.
  3. Go to the Operator hub and  search for OpenShift Elasticsearch Operator. (make sure Project filter sets to 'All projects')
  4. Click on OpenShift Elasticsearch Operator- production operators.
  5. Click on the link "View it here" from the installed operator section.
  6. View the behavior.

Actual results:

Wrong message "404: Not found" while the user selects an installed operator and navigates from operator hub to installed operator page.

 

Browser console log indicate as below

main-chunk-525818b154a57a9b220a.min.js:1 unhandled error: Uncaught TypeError: Cannot read properties of undefined (reading 'firstElementChild') TypeError: Cannot read properties of undefined (reading 'firstElementChild')
    at c (https://console-openshift-console.apps.jmekkatt-dob.ibmcloud.qe.devcluster.openshift.com/static/vendors~main-chunk-40fab65853dff2fbc413.min.js:118:125992)
    at HTMLDivElement.l (https://console-openshift-console.apps.jmekkatt-dob.ibmcloud.qe.devcluster.openshift.com/static/vendors~main-chunk-40fab65853dff2fbc413.min.js:118:126387) TypeError: Cannot read properties of undefined (reading 'firstElementChild')
    at c (vendors~main-chunk-40fab65853dff2fbc413.min.js:72303:1)
    at HTMLDivElement.l (vendors~main-chunk-40fab65853dff2fbc413.min.js:72303:1)
window.onerror @ main-chunk-525818b154a57a9b220a.min.js:1
vendors~main-chunk-40fab65853dff2fbc413.min.js:72303 Uncaught TypeError: Cannot read properties of undefined (reading 'firstElementChild')
    at c (vendors~main-chunk-40fab65853dff2fbc413.min.js:72303:1)
    at HTMLDivElement.l (vendors~main-chunk-40fab65853dff2fbc413.min.js:72303:1)
c @ vendors~main-chunk-40fab65853dff2fbc413.min.js:72303
l @ vendors~main-chunk-40fab65853dff2fbc413.min.js:72303
scroll (async)
componentWillUnmount @ vendor-patternfly-core-chunk-006bb1499791fa7cfea7.min.js:38397
hs @ vendors~main-chunk-40fab65853dff2fbc413.min.js:171377
bs @ vendors~main-chunk-40fab65853dff2fbc413.min.js:171377
hs @ vendors~main-chunk-40fab65853dff2fbc413.min.js:171377
bs @ vendors~main-chunk-40fab65853dff2fbc413.min.js:171377
Oc @ vendors~main-chunk-40fab65853dff2fbc413.min.js:171377
t.unstable_runWithPriority @ vendors~main-chunk-40fab65853dff2fbc413.min.js:171690
Hi @ vendors~main-chunk-40fab65853dff2fbc413.min.js:171377
Ac @ vendors~main-chunk-40fab65853dff2fbc413.min.js:171377
pc @ vendors~main-chunk-40fab65853dff2fbc413.min.js:171377
(anonymous) @ vendors~main-chunk-40fab65853dff2fbc413.min.js:171377
t.unstable_runWithPriority @ vendors~main-chunk-40fab65853dff2fbc413.min.js:171690
Hi @ vendors~main-chunk-40fab65853dff2fbc413.min.js:171377
Vi @ vendors~main-chunk-40fab65853dff2fbc413.min.js:171377
qi @ vendors~main-chunk-40fab65853dff2fbc413.min.js:171377
De @ vendors~main-chunk-40fab65853dff2fbc413.min.js:171377
Yt @ vendors~main-chunk-40fab65853dff2fbc413.min.js:171377
main-chunk-525818b154a57a9b220a.min.js:1          GET https://console-openshift-console.apps.jmekkatt-dob.ibmcloud.qe.devcluster.openshift.com/api/kubernetes/apis/operators.coreos.com/v1alpha1/clusterserviceversions/elasticsearch-operator.5.5.0 404 (Not Found)
  

Expected results:

Installed operator details should show without any error when the user selects an installed operator and navigates from operator hub to installed operator page.

 

Additional info:

Reproduced in both chrome[103.0.5060.114 (Official Build) (64-bit)] and firefox[91.11.0esr (64-bit)] browsers

Attached screen share for the same issue InstalledOperatorNavigation404.mp4

Description of problem:

i18n translation missing in "Remove component node from application" modal

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1. Navigate to dev console and create a workload under an Application group
2. On the Toplogy remove the workload from the Application group
3. See the i18n error in the console

Actual results:

Missing i18n key "Remove component node from application" in namespace "topology" and language "en." in console

Expected results:

No i18n error should be shown in the console.

Additional info:

 

Hi,

Description of problem

Bare Metal IPI provisioning is failing to provision the worker nodes. The metal3-machine-os-downloader InitContainer is getting in CrashLoopBackOff state because it cannot find virt-* commands in the container image.

> oc -n openshift-machine-api get pods | grep -v Running
NAME                       READY   STATUS
metal3-fc66f5846-gtq9m     0/7     Init:CrashLoopBackOff
metal3-image-cache-d4qcz   0/1     Init:1/2
metal3-image-cache-djzcf   0/1     Init:1/2
metal3-image-cache-p5mwg   0/1     Init:1/2
> oc -n openshift-machine-api logs deployment/metal3 -c metal3-machine-os-downloader
[omitted]
++ LIBGUESTFS_BACKEND=direct
++ virt-filesystems -a rhcos-412.86.202207142104-0-openstack.x86_64.qcow2 -l
/usr/local/bin/get-resource.sh: line 88: virt-filesystems: command not found
++ grep boot
++ cut -f1 '-d '
+ BOOT_DISK=
++ LIBGUESTFS_BACKEND=direct
++ virt-ls -a rhcos-412.86.202207142104-0-openstack.x86_64.qcow2 -m '' /boot/loader/entries
/usr/local/bin/get-resource.sh: line 90: virt-ls: command not found
+ BOOT_ENTRIES=
+ rm -fr /shared/tmp/tmp.CnCd2E3kxN
Version-Release number of selected component (if applicable):

OpenShift 4.12.0-ec.0+

Analysis

Since https://github.com/openshift/ocp-build-data/pull/1757, the ironic-machine-os-downloader container image is built using RHEL9 repositories.

However, following upstream move of guestfs tools to a dedicated repository [1], the libguestfs packaging differs between RHEL8 and RHEL9:

  • the libguestfs-tools-c package containing most virt-* commands is now provided by the guestfs-tools package
  • the libguestfs-tools package is now provided by the virt-win-reg package which does not require the libguestfs-tools-c package anymore

Since the Dockerfile specifies only the libguestfs-tools package, the virt-* commands are not installed when using RHEL9 repositories.

A trivial fix is to update the Dockerfile to install the guestfs-tools package instead of the libguestfs-tools package.

Regards,

Denis

This is a clone of issue OCPBUGS-2260. The following is the description of the original issue:

TRT-594 investigates failed CI upgrade runs due to alert KubePodNotReady firing.  The case was a pod getting skipped over for scheduling over two successive master node update / restarts.  The case was determined valid so the ask is to be able to have the monitoring aware that master nodes are restarting and scheduling may be delayed.   Presuming we don't want to change the existing tolerance for the non master node restart cases could we suppress it during those restarts and fall back to a second alert with increased tolerances only during those restarts, if we have metrics indicating we are restarting.  Or similar if there are better ways to handle.

The scenario is:

  • A master node (1) is out of service during upgrade
  • A pod (A) is created but can not be scheduled due to anti-affinity rules as the other nodes already host a pod of that definition
  • A second pod (B) from the same definition is created after the first
  • Pod (A) attempts scheduling but fails as the master (1) node is still updating
  • Master (1) node completes updating
  • Pod (B) attempts scheduling and succeeds
  • Next Master (2) node begins updating
  • Pod (A) can not be scheduled on the next attempt(s) as the active master nodes already have pods placed and the next master (2) node is unavailable
  • Master (2) node completes updating
  • Pod (A) is scheduled

This is a clone of issue OCPBUGS-4490. The following is the description of the original issue:

Description of problem:

When hypershift HostedCluster has endpointAccess: Private, the csi-snapshot-controller is in CrashLoopBackoff because the guest APIServer url in the admin-kubeconfig isn't reachable in Private mode.

Version-Release number of selected component (if applicable):

4.13

How reproducible:

Always

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

Description of problem:

The path used by --rotated-pod-logs to gather the rotated pod logs from /var/log/pods node folder via /api/v1/nodes/${NODE}/proxy/logs/${LOG_PATH} is only valid for regular pods but not for static pods.

The main problem is that, while normal pods have their rotated logs at this /var/log/pods/${POD_NAME}_${POD_UID_IN_API}/${CONTAINER_NAME}, static pods have them at /var/log/pods/${POD_NAME}_${CONFIG_HASH}/${CONTAINER_NAME} because the UID cannot be known at the time that the static pod is born (because static pods are created by kubelet before registering them in the kube-apiserver, and UID is assigned by the kube-apiserver).

The visible results of that are:

  • Spurious errors of not found resources related to the pods.
  • Rotated pod logs are not gathered even if present.

Version-Release number of selected component (if applicable):

4.10

How reproducible:

Always if there are static pods.

Steps to Reproduce:

1. oc adm inspect --rotated-pod-logs ns/openshift-etcd (or any other project with static pods).

Actual results:

  • Rotated pods not gathered.
  • Errors like these
    error: errors occurred while gathering data:
        one or more errors occurred while gathering pod-specific data for namespace: openshift-etcd
    
        [one or more errors occurred while gathering container data for pod etcd-master-0.example.net:
    
        the server could not find the requested resource, one or more errors occurred while gathering container data for pod etcd-master-1.example.net:
    
        the server could not find the requested resource, one or more errors occurred while gathering container data for pod etcd-master-2.example.net:
    
        the server could not find the requested resource]
    

Expected results:

No errors like the ones above and rotated pod logs to be gathered, if present.

Additional info:

Despite being marked as experimental, this --rotated-pod-logs is used in must-gather, so this issue can be easily reproduced by just running a default must-gather. I focused on bare oc adm inspect reproducers for simplicity.

Description of problem:

During restart egress firewall acls will be deleted and re-created from scratch, meaning that egress firewall rules won't be applied for some time during restart

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

Description of problem:

We're seeing frequent private DNS zone creation failures in Azure CI jobs recent two days, the Azure CI jobs have been greatly affected.
https://search.ci.openshift.org/?search=error+creating%2Fupdating+Private+DNS+Zone+Virtual+network&maxAge=48h&context=1&type=build-log&name=&excludeName=&maxMatches=5&maxBytes=20971520&groupBy=job

Such as the following error from https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/periodic-ci-openshift-release-master-ci-4.12-upgrade-from-stable-4.11-e2e-azure-sdn-upgrade/1566852244215697408

level=info msg=Consuming Openshift Manifests from target directory
level=info msg=Consuming Common Manifests from target directory
level=info msg=Credentials loaded from file "/var/run/secrets/ci.openshift.io/cluster-profile/osServicePrincipal.json"
level=info msg=Creating infrastructure resources...
level=error
level=error msg=Error: error creating/updating Private DNS Zone Virtual network link "ci-op-1w80vs6f-7f65d-t2zlz-network-link" (Resource Group "ci-op-1w80vs6f-7f65d-t2zlz-rg"): privatedns.VirtualNetworkLinksClient#CreateOrUpdate: Failure sending request: StatusCode=404 -- Original Error: Code="ParentResourceNotFound" Message="Can not perform requested operation on nested resource. Parent resource 'ci-op-1w80vs6f-7f65d.ci2.azure.devcluster.openshift.com' not found."
level=error
level=error msg=  with module.dns.azureprivatedns_zone_virtual_network_link.network,
level=error msg=  on dns/dns.tf line 13, in resource "azureprivatedns_zone_virtual_network_link" "network":
level=error msg=  13: resource "azureprivatedns_zone_virtual_network_link" "network" 

Version-Release number of selected component (if applicable):

All OCP versions

How reproducible:

https://search.ci.openshift.org/chart?name=e2e-azure&search=error+creating%2Fupdating+Private+DNS+Zone&maxAge=24h&type=build-log
shows 26% of the failed Azure jobs are related to "error creating/updating Private DNS Zone" in the past day. 
3/5 of the failed Azure jobs are caused by this in QE’s CI today. 

Steps to Reproduce:

1.
2.
3.

Actual results:


Expected results:


Additional info:

 
No Azure outage was reported from https://status.azure.com/en-us/status.
No private zone or DNS records quota exceeded was observed.   

Description of problem:

On MicroShift, the Route API is served by kube-apiserver as a CRD. Reusing the same defaulting implementation as vanilla OpenShift through a patch to kube- apiserver is expected to resolve OCPBUGS-4189 but have no detectable effect on OCP.

Additional info:

This patch will be inert on OCP, but is implemented in openshift/kubernetes because MicroShift ingests kube-apiserver through its build-time dependency on openshift/kubernetes.

Description of problem:

When all projects are selected, workloads list page and details page shows inconsistent HorizontalPodAutoscaler actions

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-07-25-010250

How reproducible:

Always

Steps to Reproduce:

  1. cluster admin goes to All projects deployments list page, click the kebab button of deployment/api-server in openshift-apiserver namespace
  2. goes to deployment details page /k8s/ns/openshift-apiserver/deployments/apiserver, click 'Actions' and check HorizontalPodAutoscaler related action items
  3. goes to project deployment list page /k8s/ns/openshift-apiserver/deployments, check the action items

Actual results:

  1. the HPA action is 'Add PodDisruptionBudget'
  2. the HPA actions are 'Edit HorizontalPodAutoscaler' and 'Remove HorizontalPodAutoscaler'
  3. the HPA actions are 'Edit HorizontalPodAutoscaler' and 'Remove HorizontalPodAutoscaler'

Expected results:

  1. workloads list and details page should have consistent HPA action items when 'All projects' are selected

Additional info:

Description of problem:
OCP v4.9.31 cluster didn't have the $search domain in /etc/resolv.conf, which was there in the v4.8.29 OCP cluster. This was observed in all the nodes of the v4.9.31 cluster.
~~~
OpenShift 4.9.31
sh-4.4# cat /etc/resolv.conf

  1. Generated by KNI resolv prepender NM dispatcher script
    nameserver 172.xx.xx.xx
    nameserver 10.xx.xx.xx
    nameserver 10.xx.xx.xx
  2. nameserver 10.xx.xx.xx

OpenShift 4.8.29

  1. Generated by KNI resolv prepender NM dispatcher script
    search sepia.lab.iad2.dc.paas.redhat.com
    nameserver 172.xx.xx.xx
    nameserver 10.xx.xx.xx
    nameserver 10.xx.xx.xx
  2. nameserver 10.xx.xx.xx
    ~~~

ENV: OpenStack IAD2, IPI installation. Connected cluster.

Version-Release number of selected component (if applicable):
OCP v4.9.31

How reproducible:
Always

Steps to Reproduce:
1. Install IPI cluster on OpenStack IAD2 platform having cluster version 4.9.31
2. Debug to any of the node(master/worker)
3. Check and confirm the missing search domain on all nodes of the cluster.

Actual results:
The search domain was missing when checked in `/etc/resolv.conf` file on all nodes of the cluster causing serious issues in the cluster.

Expected results:
The installer should embed the search domain in /etc/resolv.conf file on all nodes of the cluster.

Additional info:

  • Cu was trying to deploy secure Kerberos on the CoreOS nodes and it failed when the IPA-client install command failed. This is when the customer noticed this unusual behavior. They did not manually update the resolv.conf file to include the $search domain. They instead added the script below to /etc/NetworkManager/dispatcher.d/ and restarted NetworkManager on the node to fix this issue and installation was successful.
    ~~~
    #!/bin/bash

set -eo pipefail

DISPATCHER_FILE="/etc/NetworkManager/dispatcher.d/30-resolv-prepender"
DOMAINS="$(grep -E '\s*DOMAINS=.*iad2.dc.paas.redhat.com' $DISPATCHER_FILE \

grep -oE '[a-z0-9]*.dev.iad2.dc.paas.redhat.com' \
tr '\n' ' ')"

>&2 echo "IT-PaaS: overwriting search domains in /etc/resolv.conf with: $DOMAINS"

sed -e "/^search/d" \
-e "/Generated by/c# Generated by KNI resolv prepender NM dispatcher script \nsearch $DOMAINS" \
/etc/resolv.conf > /etc/resolv.tmp

mv /etc/resolv.tmp /etc/resolv.conf
~~~

  • Cu confirms that the $search domain was missing since the cluster was freshly installed/ They even confirmed this with a fresh new cluster as well that it was missing.
  • The fresh cluster was initially installed at v4.9.31 but was updated afterward to v4.9.43 (the latest z-stream) to see if the updates fixed anything but it didn't make any difference. The cluster is currently running v4.9.43 and shows the $search domain missing in the /etc/resolv.conf file on all nodes.

Description of problem:

Installing 1000+ SNOs via ACM/MCE via ZTP with gitops, a small percentage of clusters end up never completing install because the monitoring operator does not reconcile to available.

# oc --kubeconfig=/root/hv-vm/sno/manifests/sno01219/kubeconfig get clusterversion
NAME      VERSION   AVAILABLE   PROGRESSING   SINCE   STATUS
version             False       True          16h     Unable to apply 4.11.0: the cluster operator monitoring has not yet successfully rolled out
# oc --kubeconfig=/root/hv-vm/sno/manifests/sno01219/kubeconfig get co monitoring
NAME         VERSION   AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
monitoring             False       True          True       15h     Rollout of the monitoring stack failed and is degraded. Please investigate the degraded status error. 

 

Version-Release number of selected component (if applicable):

  • Hub OCP and SNO OCP - 4.11.0
  • ACM - 2.6.0-DOWNSTREAM-2022-08-11-23-41-09  (FC5)

 

How reproducible:

  • 2 out of 23 failures out of 1728 installs
  • ~8% of the failures are because of this issue
  • failure rate of ~.1% of the total installs

 

Additional info:

 

# oc --kubeconfig=/root/hv-vm/sno/manifests/sno01219/kubeconfig get po -n openshift-monitoring
NAME                                                     READY   STATUS              RESTARTS   AGE
alertmanager-main-0                                      0/6     ContainerCreating   0          15h
cluster-monitoring-operator-54dd78cc74-l5w24             2/2     Running             0          15h
kube-state-metrics-b6455c4dc-8hcfn                       3/3     Running             0          15h
node-exporter-k7899                                      2/2     Running             0          15h
openshift-state-metrics-7984888fbd-cl67v                 3/3     Running             0          15h
prometheus-adapter-785bf4f975-wgmnh                      1/1     Running             0          15h
prometheus-k8s-0                                         0/6     Init:0/1            0          15h
prometheus-operator-74d8754ff7-9zrgw                     2/2     Running             0          15h
prometheus-operator-admission-webhook-6665fb687d-c5jgv   1/1     Running             0          15h
thanos-querier-575496c665-jcc8l                          6/6     Running             0          15h 
# oc --kubeconfig=/root/hv-vm/sno/manifests/sno01219/kubeconfig describe po -n openshift-monitoring alertmanager-main-0
Name:                 alertmanager-main-0
Namespace:            openshift-monitoring
Priority:             2000000000
Priority Class Name:  system-cluster-critical
Node:                 sno01219/fc00:1001::8aa
Start Time:           Mon, 15 Aug 2022 23:53:39 +0000
Labels:               alertmanager=main
                      app.kubernetes.io/component=alert-router
                      app.kubernetes.io/instance=main
                      app.kubernetes.io/managed-by=prometheus-operator
                      app.kubernetes.io/name=alertmanager
                      app.kubernetes.io/part-of=openshift-monitoring
                      app.kubernetes.io/version=0.24.0
                      controller-revision-hash=alertmanager-main-fcf8dd5fb
                      statefulset.kubernetes.io/pod-name=alertmanager-main-0
Annotations:          kubectl.kubernetes.io/default-container: alertmanager
                      openshift.io/scc: nonroot
Status:               Pending
IP:
IPs:                  <none>
Controlled By:        StatefulSet/alertmanager-main
Containers:
  alertmanager:
    Container ID:
    Image:         quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:91308d35c1e56463f55c1aaa519ff4de7335d43b254c21abdb845fc8c72821a1
    Image ID:
    Ports:         9094/TCP, 9094/UDP
    Host Ports:    0/TCP, 0/UDP
    Args:
      --config.file=/etc/alertmanager/config/alertmanager.yaml
      --storage.path=/alertmanager
      --data.retention=120h
      --cluster.listen-address=
      --web.listen-address=127.0.0.1:9093
      --web.external-url=https:/console-openshift-console.apps.sno01219.rdu2.scalelab.redhat.com/monitoring
      --web.route-prefix=/
      --cluster.peer=alertmanager-main-0.alertmanager-operated:9094
      --cluster.reconnect-timeout=5m
    State:          Waiting
      Reason:       ContainerCreating
    Ready:          False
    Restart Count:  0
    Requests:
      cpu:     4m
      memory:  40Mi
    Environment:
      POD_IP:   (v1:status.podIP)
    Mounts:
      /alertmanager from alertmanager-main-db (rw)
      /etc/alertmanager/certs from tls-assets (ro)
      /etc/alertmanager/config from config-volume (rw)
      /etc/alertmanager/secrets/alertmanager-kube-rbac-proxy from secret-alertmanager-kube-rbac-proxy (ro)
      /etc/alertmanager/secrets/alertmanager-kube-rbac-proxy-metric from secret-alertmanager-kube-rbac-proxy-metric (ro)
      /etc/alertmanager/secrets/alertmanager-main-proxy from secret-alertmanager-main-proxy (ro)
      /etc/alertmanager/secrets/alertmanager-main-tls from secret-alertmanager-main-tls (ro)
      /etc/pki/ca-trust/extracted/pem/ from alertmanager-trusted-ca-bundle (ro)
      /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-hl77l (ro)
  config-reloader:
    Container ID:
    Image:         quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:209e20410ec2d3d7a502f568d2b7fe1cd1beadcb36fff2d1e6f59d77be3200e3
    Image ID:
    Port:          <none>
    Host Port:     <none>
    Command:
      /bin/prometheus-config-reloader
    Args:
      --listen-address=localhost:8080
      --reload-url=http://localhost:9093/-/reload
      --watched-dir=/etc/alertmanager/config
      --watched-dir=/etc/alertmanager/secrets/alertmanager-main-tls
      --watched-dir=/etc/alertmanager/secrets/alertmanager-main-proxy
      --watched-dir=/etc/alertmanager/secrets/alertmanager-kube-rbac-proxy
      --watched-dir=/etc/alertmanager/secrets/alertmanager-kube-rbac-proxy-metric
    State:          Waiting
      Reason:       ContainerCreating
    Ready:          False
    Restart Count:  0
    Requests:
      cpu:     1m
      memory:  10Mi
    Environment:
      POD_NAME:  alertmanager-main-0 (v1:metadata.name)
      SHARD:     -1
    Mounts:
      /etc/alertmanager/config from config-volume (ro)
      /etc/alertmanager/secrets/alertmanager-kube-rbac-proxy from secret-alertmanager-kube-rbac-proxy (ro)
      /etc/alertmanager/secrets/alertmanager-kube-rbac-proxy-metric from secret-alertmanager-kube-rbac-proxy-metric (ro)
      /etc/alertmanager/secrets/alertmanager-main-proxy from secret-alertmanager-main-proxy (ro)
      /etc/alertmanager/secrets/alertmanager-main-tls from secret-alertmanager-main-tls (ro)
      /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-hl77l (ro)
  alertmanager-proxy:
    Container ID:
    Image:         quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:140f8947593d92e1517e50a201e83bdef8eb965b552a21d3caf346a250d0cf6e
    Image ID:
    Port:          9095/TCP
    Host Port:     0/TCP
    Args:
      -provider=openshift
      -https-address=:9095
      -http-address=
      -email-domain=*
      -upstream=http://localhost:9093
      -openshift-sar=[{"resource": "namespaces", "verb": "get"}, {"resource": "alertmanagers", "resourceAPIGroup": "monitoring.coreos.com", "namespace": "openshift-monitoring", "verb": "patch", "resourceName": "non-existant"}]
      -openshift-delegate-urls={"/": {"resource": "namespaces", "verb": "get"}, "/": {"resource":"alertmanagers", "group": "monitoring.coreos.com", "namespace": "openshift-monitoring", "verb": "patch", "name": "non-existant"}}
      -tls-cert=/etc/tls/private/tls.crt
      -tls-key=/etc/tls/private/tls.key
      -client-secret-file=/var/run/secrets/kubernetes.io/serviceaccount/token
      -cookie-secret-file=/etc/proxy/secrets/session_secret
      -openshift-service-account=alertmanager-main
      -openshift-ca=/etc/pki/tls/cert.pem
      -openshift-ca=/var/run/secrets/kubernetes.io/serviceaccount/ca.crt
    State:          Waiting
      Reason:       ContainerCreating
    Ready:          False
    Restart Count:  0
    Requests:
      cpu:     1m
      memory:  20Mi
    Environment:
      HTTP_PROXY:
      HTTPS_PROXY:
      NO_PROXY:
    Mounts:
      /etc/pki/ca-trust/extracted/pem/ from alertmanager-trusted-ca-bundle (ro)
      /etc/proxy/secrets from secret-alertmanager-main-proxy (rw)
      /etc/tls/private from secret-alertmanager-main-tls (rw)
      /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-hl77l (ro)
  kube-rbac-proxy:
    Container ID:
    Image:         quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:b5e1c69d005727e3245604cfca7a63e4f9bc6e15128c7489e41d5e967305089e
    Image ID:
    Port:          9092/TCP
    Host Port:     0/TCP
    Args:
      --secure-listen-address=0.0.0.0:9092
      --upstream=http://127.0.0.1:9096
      --config-file=/etc/kube-rbac-proxy/config.yaml
      --tls-cert-file=/etc/tls/private/tls.crt
      --tls-private-key-file=/etc/tls/private/tls.key
      --tls-cipher-suites=TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
      --logtostderr=true
      --tls-min-version=VersionTLS12
    State:          Waiting
      Reason:       ContainerCreating
    Ready:          False
    Restart Count:  0
    Requests:
      cpu:        1m
      memory:     15Mi
    Environment:  <none>
    Mounts:
      /etc/kube-rbac-proxy from secret-alertmanager-kube-rbac-proxy (rw)
      /etc/tls/private from secret-alertmanager-main-tls (rw)
      /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-hl77l (ro)
  kube-rbac-proxy-metric:
    Container ID:
    Image:         quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:b5e1c69d005727e3245604cfca7a63e4f9bc6e15128c7489e41d5e967305089e
    Image ID:
    Port:          9097/TCP
    Host Port:     0/TCP
    Args:
      --secure-listen-address=0.0.0.0:9097
      --upstream=http://127.0.0.1:9093
      --config-file=/etc/kube-rbac-proxy/config.yaml
      --tls-cert-file=/etc/tls/private/tls.crt
      --tls-private-key-file=/etc/tls/private/tls.key
      --tls-cipher-suites=TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
      --client-ca-file=/etc/tls/client/client-ca.crt
      --logtostderr=true
      --allow-paths=/metrics
      --tls-min-version=VersionTLS12
    State:          Waiting
      Reason:       ContainerCreating
    Ready:          False
    Restart Count:  0
    Requests:
      cpu:        1m
      memory:     15Mi
    Environment:  <none>
    Mounts:
      /etc/kube-rbac-proxy from secret-alertmanager-kube-rbac-proxy-metric (ro)
      /etc/tls/client from metrics-client-ca (ro)
      /etc/tls/private from secret-alertmanager-main-tls (ro)
      /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-hl77l (ro)
  prom-label-proxy:
    Container ID:
    Image:         quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:2550b2cbdf864515b1edacf43c25eb6b6f179713c1df34e51f6e9bba48d6430a
    Image ID:
    Port:          <none>
    Host Port:     <none>
    Args:
      --insecure-listen-address=127.0.0.1:9096
      --upstream=http://127.0.0.1:9093
      --label=namespace
      --error-on-replace
    State:          Waiting
      Reason:       ContainerCreating
    Ready:          False
    Restart Count:  0
    Requests:
      cpu:        1m
      memory:     20Mi
    Environment:  <none>
    Mounts:
      /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-hl77l (ro)
Conditions:
  Type              Status
  Initialized       True
  Ready             False
  ContainersReady   False
  PodScheduled      True
Volumes:
  config-volume:
    Type:        Secret (a volume populated by a Secret)
    SecretName:  alertmanager-main-generated
    Optional:    false
  tls-assets:
    Type:                Projected (a volume that contains injected data from multiple sources)
    SecretName:          alertmanager-main-tls-assets-0
    SecretOptionalName:  <nil>
  secret-alertmanager-main-tls:
    Type:        Secret (a volume populated by a Secret)
    SecretName:  alertmanager-main-tls
    Optional:    false
  secret-alertmanager-main-proxy:
    Type:        Secret (a volume populated by a Secret)
    SecretName:  alertmanager-main-proxy
    Optional:    false
  secret-alertmanager-kube-rbac-proxy:
    Type:        Secret (a volume populated by a Secret)
    SecretName:  alertmanager-kube-rbac-proxy
    Optional:    false
  secret-alertmanager-kube-rbac-proxy-metric:
    Type:        Secret (a volume populated by a Secret)
    SecretName:  alertmanager-kube-rbac-proxy-metric
    Optional:    false
  alertmanager-main-db:
    Type:       EmptyDir (a temporary directory that shares a pod's lifetime)
    Medium:
    SizeLimit:  <unset>
  metrics-client-ca:
    Type:      ConfigMap (a volume populated by a ConfigMap)
    Name:      metrics-client-ca
    Optional:  false
  alertmanager-trusted-ca-bundle:
    Type:      ConfigMap (a volume populated by a ConfigMap)
    Name:      alertmanager-trusted-ca-bundle-2rsonso43rc5p
    Optional:  true
  kube-api-access-hl77l:
    Type:                    Projected (a volume that contains injected data from multiple sources)
    TokenExpirationSeconds:  3607
    ConfigMapName:           kube-root-ca.crt
    ConfigMapOptional:       <nil>
    DownwardAPI:             true
    ConfigMapName:           openshift-service-ca.crt
    ConfigMapOptional:       <nil>
QoS Class:                   Burstable
Node-Selectors:              kubernetes.io/os=linux
Tolerations:                 node.kubernetes.io/memory-pressure:NoSchedule op=Exists
                             node.kubernetes.io/not-ready:NoExecute op=Exists for 300s
                             node.kubernetes.io/unreachable:NoExecute op=Exists for 300s
Events:
  Type     Reason                  Age                    From     Message
  ----     ------                  ----                   ----     -------
  Warning  FailedCreatePodSandBox  2m25s (x409 over 15h)  kubelet  (combined from similar events): Failed to create pod sandbox: rpc error: code = Unknown desc = failed to create pod network sandbox k8s_alertmanager-main-0_openshift-monitoring_1c367a83-24e3-4249-861a-a107a6beaee2_0(dff5f302f774d060728261b3c86841ebdbd7ba11537ec9f4d90d57be17bdf44b): error adding pod openshift-monitoring_alertmanager-main-0 to CNI network "multus-cni-network": plugin type="multus" name="multus-cni-network" failed (add): [openshift-monitoring/alertmanager-main-0/1c367a83-24e3-4249-861a-a107a6beaee2:ovn-kubernetes]: error adding container to network "ovn-kubernetes": CNI request failed with status 400: '[openshift-monitoring/alertmanager-main-0 dff5f302f774d060728261b3c86841ebdbd7ba11537ec9f4d90d57be17bdf44b] [openshift-monitoring/alertmanager-main-0 dff5f302f774d060728261b3c86841ebdbd7ba11537ec9f4d90d57be17bdf44b] failed to get pod annotation: timed out waiting for annotations: context deadline exceeded                                                                                                                                                                                                                                                                             
 oc --kubeconfig=/root/hv-vm/sno/manifests/sno01219/kubeconfig describe po -n openshift-monitoring prometheus-k8s-0
Name:                 prometheus-k8s-0
Namespace:            openshift-monitoring
Priority:             2000000000
Priority Class Name:  system-cluster-critical
Node:                 sno01219/fc00:1001::8aa
Start Time:           Mon, 15 Aug 2022 23:53:39 +0000
Labels:               app.kubernetes.io/component=prometheus
                      app.kubernetes.io/instance=k8s
                      app.kubernetes.io/managed-by=prometheus-operator
                      app.kubernetes.io/name=prometheus
                      app.kubernetes.io/part-of=openshift-monitoring
                      app.kubernetes.io/version=2.36.2
                      controller-revision-hash=prometheus-k8s-546b544f8b
                      operator.prometheus.io/name=k8s
                      operator.prometheus.io/shard=0
                      prometheus=k8s
                      statefulset.kubernetes.io/pod-name=prometheus-k8s-0
Annotations:          kubectl.kubernetes.io/default-container: prometheus
                      openshift.io/scc: nonroot
Status:               Pending
IP:
IPs:                  <none>
Controlled By:        StatefulSet/prometheus-k8s
Init Containers:
  init-config-reloader:
    Container ID:
    Image:         quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:209e20410ec2d3d7a502f568d2b7fe1cd1beadcb36fff2d1e6f59d77be3200e3
    Image ID:
    Port:          8080/TCP
    Host Port:     0/TCP
    Command:
      /bin/prometheus-config-reloader
    Args:
      --watch-interval=0
      --listen-address=:8080
      --config-file=/etc/prometheus/config/prometheus.yaml.gz
      --config-envsubst-file=/etc/prometheus/config_out/prometheus.env.yaml
      --watched-dir=/etc/prometheus/rules/prometheus-k8s-rulefiles-0
    State:          Waiting
      Reason:       PodInitializing
    Ready:          False
    Restart Count:  0
    Requests:
      cpu:     1m
      memory:  10Mi
    Environment:
      POD_NAME:  prometheus-k8s-0 (v1:metadata.name)
      SHARD:     0
    Mounts:
      /etc/prometheus/config from config (rw)
      /etc/prometheus/config_out from config-out (rw)
      /etc/prometheus/rules/prometheus-k8s-rulefiles-0 from prometheus-k8s-rulefiles-0 (rw)
      /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-85zlc (ro)
Containers:
  prometheus:
    Container ID:
    Image:         quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:c7df53b796e81ba8301ba74d02317226329bd5752fd31c1b44d028e4832f21c3
    Image ID:
    Port:          <none>
    Host Port:     <none>
    Args:
      --web.console.templates=/etc/prometheus/consoles
      --web.console.libraries=/etc/prometheus/console_libraries
      --storage.tsdb.retention.time=15d
      --config.file=/etc/prometheus/config_out/prometheus.env.yaml
      --storage.tsdb.path=/prometheus
      --web.enable-lifecycle
      --web.external-url=https:/console-openshift-console.apps.sno01219.rdu2.scalelab.redhat.com/monitoring
      --web.route-prefix=/
      --web.listen-address=127.0.0.1:9090
      --web.config.file=/etc/prometheus/web_config/web-config.yaml
    State:          Waiting
      Reason:       PodInitializing
    Ready:          False
    Restart Count:  0
    Requests:
      cpu:        70m
      memory:     1Gi
    Liveness:     exec [sh -c if [ -x "$(command -v curl)" ]; then exec curl --fail http://localhost:9090/-/healthy; elif [ -x "$(command -v wget)" ]; then exec wget -q -O /dev/null http://localhost:9090/-/healthy; else exit 1; fi] delay=0s timeout=3s period=5s #success=1 #failure=6
    Readiness:    exec [sh -c if [ -x "$(command -v curl)" ]; then exec curl --fail http://localhost:9090/-/ready; elif [ -x "$(command -v wget)" ]; then exec wget -q -O /dev/null http://localhost:9090/-/ready; else exit 1; fi] delay=0s timeout=3s period=5s #success=1 #failure=3
    Startup:      exec [sh -c if [ -x "$(command -v curl)" ]; then exec curl --fail http://localhost:9090/-/ready; elif [ -x "$(command -v wget)" ]; then exec wget -q -O /dev/null http://localhost:9090/-/ready; else exit 1; fi] delay=0s timeout=3s period=15s #success=1 #failure=60
    Environment:  <none>
    Mounts:
      /etc/pki/ca-trust/extracted/pem/ from prometheus-trusted-ca-bundle (ro)
      /etc/prometheus/certs from tls-assets (ro)
      /etc/prometheus/config_out from config-out (ro)
      /etc/prometheus/configmaps/kubelet-serving-ca-bundle from configmap-kubelet-serving-ca-bundle (ro)
      /etc/prometheus/configmaps/metrics-client-ca from configmap-metrics-client-ca (ro)
      /etc/prometheus/configmaps/serving-certs-ca-bundle from configmap-serving-certs-ca-bundle (ro)
      /etc/prometheus/rules/prometheus-k8s-rulefiles-0 from prometheus-k8s-rulefiles-0 (rw)
      /etc/prometheus/secrets/kube-etcd-client-certs from secret-kube-etcd-client-certs (ro)
      /etc/prometheus/secrets/kube-rbac-proxy from secret-kube-rbac-proxy (ro)
      /etc/prometheus/secrets/metrics-client-certs from secret-metrics-client-certs (ro)
      /etc/prometheus/secrets/prometheus-k8s-proxy from secret-prometheus-k8s-proxy (ro)
      /etc/prometheus/secrets/prometheus-k8s-thanos-sidecar-tls from secret-prometheus-k8s-thanos-sidecar-tls (ro)
      /etc/prometheus/secrets/prometheus-k8s-tls from secret-prometheus-k8s-tls (ro)
      /etc/prometheus/web_config/web-config.yaml from web-config (ro,path="web-config.yaml")
      /prometheus from prometheus-k8s-db (rw)
      /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-85zlc (ro)
  config-reloader:
    Container ID:
    Image:         quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:209e20410ec2d3d7a502f568d2b7fe1cd1beadcb36fff2d1e6f59d77be3200e3
    Image ID:
    Port:          <none>
    Host Port:     <none>
    Command:
      /bin/prometheus-config-reloader
    Args:
      --listen-address=localhost:8080
      --reload-url=http://localhost:9090/-/reload
      --config-file=/etc/prometheus/config/prometheus.yaml.gz
      --config-envsubst-file=/etc/prometheus/config_out/prometheus.env.yaml
      --watched-dir=/etc/prometheus/rules/prometheus-k8s-rulefiles-0
    State:          Waiting
      Reason:       PodInitializing
    Ready:          False
    Restart Count:  0
    Requests:
      cpu:     1m
      memory:  10Mi
    Environment:
      POD_NAME:  prometheus-k8s-0 (v1:metadata.name)
      SHARD:     0
    Mounts:
      /etc/prometheus/config from config (rw)
      /etc/prometheus/config_out from config-out (rw)
      /etc/prometheus/rules/prometheus-k8s-rulefiles-0 from prometheus-k8s-rulefiles-0 (rw)
      /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-85zlc (ro)
  thanos-sidecar:
    Container ID:
    Image:         quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:36fc214537c763b3a3f0a9dc7a1bd4378a80428c31b2629df8786a9b09155e6d
    Image ID:
    Ports:         10902/TCP, 10901/TCP
    Host Ports:    0/TCP, 0/TCP
    Args:
      sidecar
      --prometheus.url=http://localhost:9090/
      --tsdb.path=/prometheus
      --http-address=127.0.0.1:10902
      --grpc-server-tls-cert=/etc/tls/grpc/server.crt
      --grpc-server-tls-key=/etc/tls/grpc/server.key
      --grpc-server-tls-client-ca=/etc/tls/grpc/ca.crt
    State:          Waiting
      Reason:       PodInitializing
    Ready:          False
    Restart Count:  0
    Requests:
      cpu:        1m
      memory:     25Mi
    Environment:  <none>
    Mounts:
      /etc/tls/grpc from secret-grpc-tls (rw)
      /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-85zlc (ro)
  prometheus-proxy:
    Container ID:
    Image:         quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:140f8947593d92e1517e50a201e83bdef8eb965b552a21d3caf346a250d0cf6e
    Image ID:
    Port:          9091/TCP
    Host Port:     0/TCP
    Args:
      -provider=openshift
      -https-address=:9091
      -http-address=
      -email-domain=*
      -upstream=http://localhost:9090
      -openshift-service-account=prometheus-k8s
      -openshift-sar={"resource": "namespaces", "verb": "get"}
      -openshift-delegate-urls={"/": {"resource": "namespaces", "verb": "get"}}
      -tls-cert=/etc/tls/private/tls.crt
      -tls-key=/etc/tls/private/tls.key
      -client-secret-file=/var/run/secrets/kubernetes.io/serviceaccount/token
      -cookie-secret-file=/etc/proxy/secrets/session_secret
      -openshift-ca=/etc/pki/tls/cert.pem
      -openshift-ca=/var/run/secrets/kubernetes.io/serviceaccount/ca.crt
    State:          Waiting
      Reason:       PodInitializing
    Ready:          False
    Restart Count:  0
    Requests:
      cpu:     1m
      memory:  20Mi
    Environment:
      HTTP_PROXY:
      HTTPS_PROXY:
      NO_PROXY:
    Mounts:
      /etc/pki/ca-trust/extracted/pem/ from prometheus-trusted-ca-bundle (ro)
      /etc/proxy/secrets from secret-prometheus-k8s-proxy (rw)
      /etc/tls/private from secret-prometheus-k8s-tls (rw)
      /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-85zlc (ro)
  kube-rbac-proxy:
    Container ID:
    Image:         quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:b5e1c69d005727e3245604cfca7a63e4f9bc6e15128c7489e41d5e967305089e
    Image ID:
    Port:          9092/TCP
    Host Port:     0/TCP
    Args:
      --secure-listen-address=0.0.0.0:9092
      --upstream=http://127.0.0.1:9090
      --allow-paths=/metrics
      --config-file=/etc/kube-rbac-proxy/config.yaml
      --tls-cert-file=/etc/tls/private/tls.crt
      --tls-private-key-file=/etc/tls/private/tls.key
      --client-ca-file=/etc/tls/client/client-ca.crt
      --tls-cipher-suites=TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
      --logtostderr=true
      --tls-min-version=VersionTLS12
    State:          Waiting
      Reason:       PodInitializing
    Ready:          False
    Restart Count:  0
    Requests:
      cpu:        1m
      memory:     15Mi
    Environment:  <none>
    Mounts:
      /etc/kube-rbac-proxy from secret-kube-rbac-proxy (rw)
      /etc/tls/client from configmap-metrics-client-ca (ro)
      /etc/tls/private from secret-prometheus-k8s-tls (rw)
      /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-85zlc (ro)
  kube-rbac-proxy-thanos:
    Container ID:
    Image:         quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:b5e1c69d005727e3245604cfca7a63e4f9bc6e15128c7489e41d5e967305089e
    Image ID:
    Port:          10902/TCP
    Host Port:     0/TCP
    Args:
      --secure-listen-address=[$(POD_IP)]:10902
      --upstream=http://127.0.0.1:10902
      --tls-cert-file=/etc/tls/private/tls.crt
      --tls-private-key-file=/etc/tls/private/tls.key
      --client-ca-file=/etc/tls/client/client-ca.crt
      --config-file=/etc/kube-rbac-proxy/config.yaml
      --tls-cipher-suites=TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
      --allow-paths=/metrics
      --logtostderr=true
      --tls-min-version=VersionTLS12
      --client-ca-file=/etc/tls/client/client-ca.crt
    State:          Waiting
      Reason:       PodInitializing
    Ready:          False
    Restart Count:  0
    Requests:
      cpu:     1m
      memory:  10Mi
    Environment:
      POD_IP:   (v1:status.podIP)
    Mounts:
      /etc/kube-rbac-proxy from secret-kube-rbac-proxy (rw)
      /etc/tls/client from metrics-client-ca (ro)
      /etc/tls/private from secret-prometheus-k8s-thanos-sidecar-tls (rw)
      /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-85zlc (ro)
Conditions:
  Type              Status
  Initialized       False
  Ready             False
  ContainersReady   False
  PodScheduled      True
Volumes:
  config:
    Type:        Secret (a volume populated by a Secret)
    SecretName:  prometheus-k8s
    Optional:    false
  tls-assets:
    Type:                Projected (a volume that contains injected data from multiple sources)
    SecretName:          prometheus-k8s-tls-assets-0
    SecretOptionalName:  <nil>
  config-out:
    Type:       EmptyDir (a temporary directory that shares a pod's lifetime)
    Medium:
    SizeLimit:  <unset>
  prometheus-k8s-rulefiles-0:
    Type:      ConfigMap (a volume populated by a ConfigMap)
    Name:      prometheus-k8s-rulefiles-0
    Optional:  false
  web-config:
    Type:        Secret (a volume populated by a Secret)
    SecretName:  prometheus-k8s-web-config
    Optional:    false
  secret-kube-etcd-client-certs:
    Type:        Secret (a volume populated by a Secret)
    SecretName:  kube-etcd-client-certs
    Optional:    false
  secret-prometheus-k8s-tls:
    Type:        Secret (a volume populated by a Secret)
    SecretName:  prometheus-k8s-tls
    Optional:    false
  secret-prometheus-k8s-proxy:
    Type:        Secret (a volume populated by a Secret)
    SecretName:  prometheus-k8s-proxy
    Optional:    false
  secret-prometheus-k8s-thanos-sidecar-tls:
    Type:        Secret (a volume populated by a Secret)
    SecretName:  prometheus-k8s-thanos-sidecar-tls
    Optional:    false
  secret-kube-rbac-proxy:
    Type:        Secret (a volume populated by a Secret)
    SecretName:  kube-rbac-proxy
    Optional:    false
  secret-metrics-client-certs:
    Type:        Secret (a volume populated by a Secret)
    SecretName:  metrics-client-certs
    Optional:    false
  configmap-serving-certs-ca-bundle:
    Type:      ConfigMap (a volume populated by a ConfigMap)
    Name:      serving-certs-ca-bundle
    Optional:  false
  configmap-kubelet-serving-ca-bundle:
    Type:      ConfigMap (a volume populated by a ConfigMap)
    Name:      kubelet-serving-ca-bundle
    Optional:  false
  configmap-metrics-client-ca:
    Type:      ConfigMap (a volume populated by a ConfigMap)
    Name:      metrics-client-ca
    Optional:  false
  prometheus-k8s-db:
    Type:       EmptyDir (a temporary directory that shares a pod's lifetime)
    Medium:
    SizeLimit:  <unset>
  metrics-client-ca:
    Type:      ConfigMap (a volume populated by a ConfigMap)
    Name:      metrics-client-ca
    Optional:  false
  secret-grpc-tls:
    Type:        Secret (a volume populated by a Secret)
    SecretName:  prometheus-k8s-grpc-tls-crdkohb1gb92n
    Optional:    false
  prometheus-trusted-ca-bundle:
    Type:      ConfigMap (a volume populated by a ConfigMap)
    Name:      prometheus-trusted-ca-bundle-2rsonso43rc5p
    Optional:  true
  kube-api-access-85zlc:
    Type:                    Projected (a volume that contains injected data from multiple sources)
    TokenExpirationSeconds:  3607
    ConfigMapName:           kube-root-ca.crt
    ConfigMapOptional:       <nil>
    DownwardAPI:             true
    ConfigMapName:           openshift-service-ca.crt
    ConfigMapOptional:       <nil>
QoS Class:                   Burstable
Node-Selectors:              kubernetes.io/os=linux
Tolerations:                 node.kubernetes.io/memory-pressure:NoSchedule op=Exists
                             node.kubernetes.io/not-ready:NoExecute op=Exists for 300s
                             node.kubernetes.io/unreachable:NoExecute op=Exists for 300s
Events:
  Type     Reason                  Age                    From     Message
  ----     ------                  ----                   ----     -------
  Warning  FailedCreatePodSandBox  4m19s (x409 over 15h)  kubelet  (combined from similar events): Failed to create pod sandbox: rpc error: code = Unknown desc = failed to create pod network sandbox k8s_prometheus-k8s-0_openshift-monitoring_debda4d2-6914-4b36-92e0-78f68d539ab3_0(86af91d4e64ab0fbad95352b029762e9856ff24005445b458bccb22e0ee9b655): error adding pod openshift-monitoring_prometheus-k8s-0 to CNI network "multus-cni-network": plugin type="multus" name="multus-cni-network" failed (add): [openshift-monitoring/prometheus-k8s-0/debda4d2-6914-4b36-92e0-78f68d539ab3:ovn-kubernetes]: error adding container to network "ovn-kubernetes": CNI request failed with status 400: '[openshift-monitoring/prometheus-k8s-0 86af91d4e64ab0fbad95352b029762e9856ff24005445b458bccb22e0ee9b655] [openshift-monitoring/prometheus-k8s-0 86af91d4e64ab0fbad95352b029762e9856ff24005445b458bccb22e0ee9b655] failed to get pod annotation: timed out waiting for annotations: context deadline exceeded

Both pods in error state seem to be waiting on this issue "failed to get pod annotation: timed out waiting for annotations: context deadline exceeded"

This is a clone of issue OCPBUGS-3186. The following is the description of the original issue:

Description of problem:

fail to get clear error message when zones is not match with the the subnets in BYON

Version-Release number of selected component (if applicable):

4.12

How reproducible:

Always

Steps to Reproduce:

1. install-config.yaml 
 yq '.controlPlane.platform.ibmcloud.zones,.platform.ibmcloud.controlPlaneSubnets' install-config.yaml 
["ca-tor-1", "ca-tor-2", "ca-tor-3"]
- ca-tor-existing-network-1-cp-ca-tor-2
- ca-tor-existing-network-1-cp-ca-tor-3
2. openshift-install create manifests --dir byon-az-test-1

Actual results:

FATAL failed to fetch Master Machines: failed to generate asset "Master Machines": failed to create master machine objects: failed to create provider: no subnet found for ca-tor-1

Expected results:

more clear error message in install-config.yaml

Additional info:

 

 

 

 

This is a clone of issue OCPBUGS-1453. The following is the description of the original issue:

Description of problem:

TargetDown alert fired while it shouldn't.
Prometheus endpoints are not always properly unregistered and the alert will therefore think that some Kube service endpoints are down

Version-Release number of selected component (if applicable):

The problem as always been there.

How reproducible:

Not reproducible.
Most of the time Prometheus endpoints are properly unregistered.
Aim here is to get the TargetDown Prometheus expression be more resilient; this can be tested on past metrics data in which the unregistration issue was encountered.

Steps to Reproduce:

N/A

Actual results:

TargetDown alert triggered while Kube service endpoints are all up & running.

Expected results:

TargetDown alert should not have been trigerred.

Our CMO e2e tests create several containers besides the standard CMO deployment. These pods do currently not set any security context capabilities. Currently this creates a warning like so:

W0705 08:35:38.590283 15206 warnings.go:70] would violate PodSecurity "restricted:v1.24": allowPrivilegeEscalation != false (container "alertmanager-webhook-e2e-testutil" must set securityContext.allowPrivilegeEscalation=false), unrestricted capabilities (container "alertmanager-webhook-e2e-testutil" must set securityContext.capabilities.drop=["ALL"]), runAsNonRoot != true (pod or container "alertmanager-webhook-e2e-testutil" must set securityContext.runAsNonRoot=true), seccompProfile (pod or container "alertmanager-webhook-e2e-testutil" must set securityContext.seccompProfile.type to "RuntimeDefault" or "Localhost")

We should be proactive and set security capability contraints. From this run this seems to impact the following pods/containers:

  • alertmanager-webhook-e2e-testutil
  • prometheus-example-app

Both are used more then once.

Relevant docs: https://docs.openshift.com/container-platform/4.10/authentication/managing-security-context-constraints.html#security-context-constraints-about_configuring-internal-oauth

Description of problem:

The icon color of Alerts in the Topology list view should be based on alert type.

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1. create a deployment
2. Create a resource quota so that quota alert will be visible in topology list page
3. navigate to topology list page
3.

Actual results:

Alert icon color is black and white. See the screenshots

Expected results:

Alert icon color should be base on alert type. 

Additional info:

 

This is a clone of issue OCPBUGS-1427. The following is the description of the original issue:

Description of problem:

Jump looks the worst on gcp, but looking closer Azure and AWS both jumped as well just not as high.

Disruption data indicates that the image registry on GCP was averaging around 30-40 seconds of disruption during an upgrade, until Aug 27th when it jumped to 125-135 seconds and has remained there ever since.

We see similar spikes in ingress-to-console and ingress-to-oauth. NOTE: image registry backend is also behind ingress, so all three are ingress related disruption.

https://datastudio.google.com/s/uBC4zuBFdTE

These charts show the problem on Aug 27 for registry, ingress to console, and ingress to oauth.

sdn network type appears unaffected.

Something merged Aug 26-27 that caused a significant change for anything behind ingress using ovn on gcp.

Description of problem: As discovered in https://issues.redhat.com/browse/OCPBUGS-2795, gophercloud fails to list swift containers when the endpoint speaks HTTP2. This means that CIRO will provision a 100GB cinder volume even though swift is available to the tenant.

We're for example seeing this behavior in our CI on vexxhost.

The gophercloud commit that fixed this issue is https://github.com/gophercloud/gophercloud/commit/b7d5b2cdd7ffc13e79d924f61571b0e5f74ec91c, specifically the `|| ct == ""` part on line 75 of openstack/objectstorage/v1/containers/results.go. This commit made it in gophercloud v0.18.0.

CIRO still depends on gophercloud v0.17.0. We should bump gophercloud to fix the bug.

Version-Release number of selected component (if applicable):

All versions. Fix should go to 4.8 - 4.12.

How reproducible:

Always, when swift speaks HTTP2.

Steps to Reproduce:

1.
2.
3.

Actual results:


Expected results:


Additional info:


Description of problem:

Added a script to collect PodNetworkConnectivityChecks to able to view the overall status of the pod network connectivity.

Current must-gather collects the contents of `openshift-network-diagnostics` but does not collect the PodNetworkConnectivityCheck.

Version-Release number of selected component (if applicable):

4.12, 4.11, 4.10

This is a clone of issue OCPBUGS-2824. The following is the description of the original issue:

Description of problem:

When users adjust their browsers to small size, the deploymnet details page on the Topology page overrides the drop-down list component, which prevents the user from using the drop-down list functionality. All content on the dropdown list would be covered

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-10-24-103753

How reproducible:

Always

Steps to Reproduce:

1. Login OCP, go to developer perspective -> Topology page
2. Click and open one resource (eg: deployment), make sure the resource sidebar has been opened
3. Adjust the browser windows to small size
4. Check if the dropdown list component has been covered 

Actual results:

All the dorpdown list component will be covered by the deployment details page (See attachment for more details)

Expected results:

The dropdown list component should be displayed on the top, the function should work even if the windows is small

Additional info:

 

Description of problem:

Alert actions are not triggering modal from where storage cluster can be expanded.

Version-Release number of selected component (if applicable):

4.12

How reproducible:

1/1

Steps to Reproduce:

1. Fill up a storage cluster to 80%
2. Alert is seen in cluster dashboard.
3. Click the Add Capacity button

Actual results:

Modal is not launched.

Expected results:

Modal should be launched.

Additional info:

 

This is a clone of issue OCPBUGS-3277. The following is the description of the original issue:

I saw this occur one time when running installs in a continuous loop. This was with COMPaCT_IPV4 in a non-disconnected setup.

WaitForBootrapComplete shows it can't access the API

level=info msg=Unable to retrieve cluster metadata from Agent Rest API: no clusterID known for the cluster
level=debug msg=cluster is not registered in rest API
level=debug msg=infraenv is not registered in rest API

This is because create-cluster-and-infraenv.service failed

Failed Units: 2
  create-cluster-and-infraenv.service
  NetworkManager-wait-online.service

The agentbasedinstaller register command wasn't able to retrieve the image to get the version

Nov 03 23:03:24 master-0 create-cluster-and-infraenv[2702]: time="2022-11-03T23:03:24Z" level=error msg="command 'oc adm release info -o template --template '\{{.metadata.version}}' --insecure=false registry.ci.openshift.org/ocp/release:4.12.0-0.nightly-2022-10-25-210451 --registry-config=/tmp/registry-config3852044519' exited with non-zero exit code 1: \nerror: unable to read image registry.ci.openshift.org/ocp/release:4.12.0-0.nightly-2022-10-25-210451: Get \"https://registry.ci.openshift.org/v2/\": dial tcp: lookup registry.ci.openshift.org on 192.168.111.1:53: read udp 192.168.111.80:51315->192.168.111.1:53: i/o timeout\n"
Nov 03 23:03:24 master-0 create-cluster-and-infraenv[2702]: time="2022-11-03T23:03:24Z" level=error msg="failed to get image openshift version from release image registry.ci.openshift.org/ocp/release:4.12.0-0.nightly-2022-10-25-210451" error="command 'oc adm release info -o template --template '\{{.metadata.version}}' --insecure=false registry.ci.openshift.org/ocp/release:4.12.0-0.nightly-2022-10-25-210451 --registry-config=/tmp/registry-config3852044519' exited with non-zero exit code 1: \nerror: unable to read image registry.ci.openshift.org/ocp/release:4.12.0-0.nightly-2022-10-25-210451: Get \"https://registry.ci.openshift.org/v2/\": dial tcp: lookup registry.ci.openshift.org on 192.168.111.1:53: read udp 192.168.111.80:51315->192.168.111.1:53: i/o timeout\n"

This occurs when attempting to get the release here:
https://github.com/openshift/assisted-service/blob/master/cmd/agentbasedinstaller/register.go#L58

 

We should add a retry mechanism or restart the service to handle spurious network failures like this.

 

 

This is a clone of issue OCPBUGS-3405. The following is the description of the original issue:

In case it should be used for publishing artifacts in CI jobs.

Look into to see if the following things are leaked:

  • pull secret
  • ssh key
  • potentially values in journal logs

Description of problem:

To address: 'Static Pod is managed but errored" err="managed container xxx does not have Resource.Requests'

Version-Release number of selected component (if applicable):

4.12

How reproducible:

 

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

Already merged in https://github.com/openshift/cluster-kube-apiserver-operator/pull/1398

Description of problem:
Latest implementation of history pruner (pr805 [1]) had increased max upgrade history in cvo to 100, and implemented a weight based pruning priority strategy for in case history length grows any larger. This pruning however is not happening, letting history grow uncontrollably, and potentially reach resource limits of etcd or kubernetes.

Observed the following while running continuous upgrade-rollback cycles:

$ oc get clusterversion version -o json | jq '.status.history|length'
203

Version-Release number of selected component (if applicable):
4.12.0-0.nightly-2022-08-23-223922
4.12.0-0.nightly-2022-08-23-153511

How reproducible:
1/1

Steps to Reproduce:
Same as described in bz2097067 [2], with addition of waiting a few minutes after the first rollback to allow it to reach 'Completed' state.

Actual results:
History grows uncontrollably

Expected results:
History should be pruned to keep max size of 100

Additional info:

[1] https://github.com/openshift/cluster-version-operator/pull/805
[2] https://bugzilla.redhat.com/show_bug.cgi?id=2097067#c4

Description of problem:

mapi_machinehealthcheck_short_circuit is not properly reconciling the state, when a MachineHealthCheck is failing because of unhealthy Machines but then is removed.

When doing two MachineSet (called blue and green and only one has running Machines at a specific point in time) with MachineAutoscaler and MachineHealthCheck, the mapi_machinehealthcheck_short_circuit will continue to report 1 for MachineHealth that actually was removed because of a switch from blue to green.

$ oc get machineset | egrep 'blue|green'
housiocp4-wvqbx-worker-blue-us-east-2a    0         0                             2d17h
housiocp4-wvqbx-worker-green-us-east-2a   1         1         1       1           2d17h

$ oc get machineautoscaler
NAME                      REF KIND     REF NAME                                   MIN   MAX   AGE
worker-green-us-east-1a   MachineSet   housiocp4-wvqbx-worker-green-us-east-2a   1     4     2d17h

$ oc get machinehealthcheck
NAME                              MAXUNHEALTHY   EXPECTEDMACHINES   CURRENTHEALTHY
machine-api-termination-handler   100%           0                  0
worker-green-us-east-1a           40%            1                  1

      {
        "name": "machine-health-check-unterminated-short-circuit",
        "file": "/etc/prometheus/rules/prometheus-k8s-rulefiles-0/openshift-machine-api-machine-api-operator-prometheus-rules-ccb650d9-6fc4-422b-90bb-70452f4aff8f.yaml",
        "rules": [
          { 
            "state": "firing",
            "name": "MachineHealthCheckUnterminatedShortCircuit",
            "query": "mapi_machinehealthcheck_short_circuit == 1",
            "duration": 1800,
            "labels": {
              "severity": "warning"
            },
            "annotations": {
              "description": "The number of unhealthy machines has exceeded the `maxUnhealthy` limit for the check, you should check\nthe status of machines in the cluster.\n",
              "summary": "machine health check {{ $labels.name }} has been disabled by short circuit for more than 30 minutes"
            },
            "alerts": [
              { 
                "labels": {
                  "alertname": "MachineHealthCheckUnterminatedShortCircuit",
                  "container": "kube-rbac-proxy-mhc-mtrc",
                  "endpoint": "mhc-mtrc",
                  "exported_namespace": "openshift-machine-api",
                  "instance": "10.128.0.58:8444",
                  "job": "machine-api-controllers",
                  "name": "worker-blue-us-east-1a",
                  "namespace": "openshift-machine-api",
                  "pod": "machine-api-controllers-779dcb8769-8gcn6",
                  "service": "machine-api-controllers",
                  "severity": "warning"
                },
                "annotations": {
                  "description": "The number of unhealthy machines has exceeded the `maxUnhealthy` limit for the check, you should check\nthe status of machines in the cluster.\n",
                  "summary": "machine health check worker-blue-us-east-1a has been disabled by short circuit for more than 30 minutes"
                },
                "state": "firing",
                "activeAt": "2022-12-09T15:59:25.1287541Z",
                "value": "1e+00"
              }
            ],
            "health": "ok",
            "evaluationTime": 0.000648129,
            "lastEvaluation": "2022-12-12T09:35:55.140174009Z",
            "type": "alerting"
          }
        ],
        "interval": 30,
        "limit": 0,
        "evaluationTime": 0.000661589,
        "lastEvaluation": "2022-12-12T09:35:55.140165629Z"
      },

As we can see above, worker-blue-us-east-1a is no longer available and active but rather worker-green-us-east-1a. But worker-blue-us-east-1a was there before the switch to green has happen and was actuall reporting some unhealthy Machines. But since it's now gone, mapi_machinehealthcheck_short_circuit should properly reconcile as otherwise this is a false/positive alert.

Version-Release number of selected component (if applicable):

OpenShift Container Platform 4.12.0-rc.3 (but is also seen on previous version)

How reproducible:

- Always

Steps to Reproduce:

1. Setup OpenShift Container Platform 4 on AWS for example
2. Create blue and green MachineSet with MachineAutoScaler and MachineHealthCheck
3. Have active Machines for blue only
4. Trigger unhealthy Machines in blue MachineSet
5. Switch to green MachineSet, by removing MachineHealthCheck, MachineAutoscaler and setting replicate of blue MachineSet to 0
6. Create green MachineHealthCheck, MachineAutoscaler and scale geen MachineSet to 1
7. Observe how mapi_machinehealthcheck_short_circuit continues to report unhealthy state for blue MachineHealthCheck which no longer exists.

Actual results:

mapi_machinehealthcheck_short_circuit reporting problematic MachineHealthCheck even though the faulty MachineHealthCheck does no longer exist.

Expected results:

mapi_machinehealthcheck_short_circuit to properly reconcile it's state and remove MachineHealthChecks that have been removed on OpenShift Container Platform level

Additional info:

It kind of looks like similar to the issue reported in https://bugzilla.redhat.com/show_bug.cgi?id=2013528 respectively https://bugzilla.redhat.com/show_bug.cgi?id=2047702 (although https://bugzilla.redhat.com/show_bug.cgi?id=2047702 may not be super relevant)

Description of problem:

This a bug record to pin down dependencies version in CMO release 4.12 after the release-4.12 branch was detached from master branch.

Version-Release number of selected component (if applicable):

4.12

How reproducible:

N/A

Steps to Reproduce:

N/A

Actual results:

N/A

Expected results:

N/A

Additional info:

None.

This is a clone of issue OCPBUGS-3195. The following is the description of the original issue:

Description of problem:

the service ca controller start func seems to return that error as soon as its context is cancelled (which seems to happen the moment the first signal is received): https://github.com/openshift/service-ca-operator/blob/42088528ef8a6a4b8c99b0f558246b8025584056/pkg/controller/starter.go#L24

that apparently triggers os.Exit(1) immediately https://github.com/openshift/service-ca-operator/blob/42088528ef8a6a4b8c99b0f55824[…]om/openshift/library-go/pkg/controller/controllercmd/builder.go

the lock release doesn't happen until the periodic renew tick breaks out https://github.com/openshift/service-ca-operator/blob/42088528ef8a6a4b8c99b0f55824[…]/vendor/k8s.io/client-go/tools/leaderelection/leaderelection.go

seems unlikely that you'd reach the call to le.release() before the call to os.Exit(1) in the other goroutine

Version-Release number of selected component (if applicable):

4.13.0

How reproducible:

~always

Steps to Reproduce:

1. oc delete -n openshift-service-ca pod <service-ca pod>

Actual results:

the old pod logs show:

W1103 09:59:14.370594       1 builder.go:106] graceful termination failed, controllers failed with error: stopped

and when a new pod comes up to replace it, it has to wait for a while before acquiring the leader lock

I1103 16:46:00.166173       1 leaderelection.go:248] attempting to acquire leader lease openshift-service-ca/service-ca-controller-lock...
 .... waiting ....
I1103 16:48:30.004187       1 leaderelection.go:258] successfully acquired lease openshift-service-ca/service-ca-controller-lock

Expected results:

new pod can acquire the leader lease without waiting for the old pod's lease to expire

Additional info:

 

Tracker issue for bootimage bump in 4.12. This issue should block issues which need a bootimage bump to fix.

The previous bump was OCPBUGS-2997.

This is a clone of issue OCPBUGS-3668. The following is the description of the original issue:

Description of problem:

Installer fails to install 4.12.0-rc.0 on VMware IPI with the script that worked with prior OCP versions.
Error happens during Terraform prepare step when gathering information in the "Platform Provisioning Check". It looks like a permission issue, but we're using the VCenter administrator account. I double checked and that account has all the necessary permissions.

Version-Release number of selected component (if applicable):

OCP installer 4.12.0-rc.0
VSphere & Vcenter 7.0.3 - no pending updates

How reproducible:

always - we observed this already in the nightlies, but wanted to wait for a RC to confirm

Steps to Reproduce:

1. Try to install using the openshift-install binary

Actual results:

Fails during the preparation step

Expected results:

Installs the cluster ;)

Additional info:

This runs in our CICD pipeline, let me know if you want to need access to the full run log:
https://gitlab.consulting.redhat.com/cblum/storage-ocs-lab/-/jobs/219304

This includes the install-config.yaml, all component versions and the full debug log output

Description of problem:

some upgrade ci jobs from 4.11.z to 4.12 nightly build are failed, because system unit machine-config-daemon-update-rpmostree-via-container is failed

e.g. job https://qe-private-deck-ci.apps.ci.l2s4.p1.openshiftapps.com/view/gs/qe-private-deck/logs/periodic-ci-openshift-openshift-tests-private-release-4.12-nightly-4.12-upgrade-from-stable-4.11-aws-ipi-proxy-p1/1579169944476585984

omg get mcp
NAME    CONFIG                                            UPDATED  UPDATING  DEGRADED  MACHINECOUNT  READYMACHINECOUNT  UPDATEDMACHINECOUNT  DEGRADEDMACHINECOUNT  AGE
worker  rendered-worker-6e18de1272fad7a5ca1529941e3ceaed  False    True      True      3             0                  0                    1                     3h53m
master  rendered-master-60f4ff5893c94f53acd9ebb7a6bf53d4  False    True      True      3             0                  0                    1                     3h53m 

check issued node

omg get node/ip-10-0-57-74.us-east-2.compute.internal -o yaml|yq -y '.metadata.annotations'
cloud.network.openshift.io/egress-ipconfig: '[{"interface":"eni-0f6de21569b5b65c8","ifaddr":{"ipv4":"10.0.48.0/20"},"capacity":{"ipv4":14,"ipv6":15}}]'
csi.volume.kubernetes.io/nodeid: '{"ebs.csi.aws.com":"i-01a34f6b5f2cd1e41"}'
machine.openshift.io/machine: openshift-machine-api/ci-op-kb95kxx9-2a438-r6z94-master-2
machineconfiguration.openshift.io/controlPlaneTopology: HighlyAvailable
machineconfiguration.openshift.io/currentConfig: rendered-master-065664319cfbaee64277097d49a8a5a6
machineconfiguration.openshift.io/desiredConfig: rendered-master-60f4ff5893c94f53acd9ebb7a6bf53d4
machineconfiguration.openshift.io/desiredDrain: drain-rendered-master-60f4ff5893c94f53acd9ebb7a6bf53d4
machineconfiguration.openshift.io/lastAppliedDrain: drain-rendered-master-60f4ff5893c94f53acd9ebb7a6bf53d4
machineconfiguration.openshift.io/reason: 'error running systemd-run --unit machine-config-daemon-update-rpmostree-via-container
  --collect --wait -- podman run --authfile /var/lib/kubelet/config.json --privileged
  --pid=host --net=host --rm -v /:/run/host quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:0daf5c4a35424410e88dde102022fc3581302bc8a98e09e2e4748502c59b3661
  rpm-ostree ex deploy-from-self /run/host: Running as unit: machine-config-daemon-update-rpmostree-via-container.service


  Finished with result: exit-code


  Main processes terminated with: code=exited/status=125


  Service runtime: 2min 52ms


  CPU time consumed: 144ms


  : exit status 125'
machineconfiguration.openshift.io/state: Degraded
volumes.kubernetes.io/controller-managed-attach-detach: 'true' 

check mcd log on issued node

omg get pod -n openshift-machine-config-operator  -o json | jq -r '.items[]|select(.spec.nodeName=="ip-10-0-57-74.us-east-2.compute.internal")|.metadata.name' | grep daemon
machine-config-daemon-znbvf

2022-10-09T22:12:58.797891917Z I1009 22:12:58.797821  179598 update.go:1917] Updating OS to layered image quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:0daf5c4a35424410e88dde102022fc3581302bc8a98e09e2e4748502c59b3661
2022-10-09T22:12:58.797891917Z I1009 22:12:58.797846  179598 rpm-ostree.go:447] Running captured: rpm-ostree --version
2022-10-09T22:12:58.815829171Z I1009 22:12:58.815800  179598 update.go:2068] rpm-ostree is not new enough for layering; forcing an update via container
2022-10-09T22:12:58.817577513Z I1009 22:12:58.817555  179598 update.go:2053] Running: systemd-run --unit machine-config-daemon-update-rpmostree-via-container --collect --wait -- podman run --authfile /var/lib/kubelet/config.json --privileged --pid=host --net=host --rm -v /:/run/host quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:0daf5c4a35424410e88dde102022fc3581302bc8a98e09e2e4748502c59b3661 rpm-ostree ex deploy-from-self /run/host 
...
2022-10-09T22:15:00.831959313Z E1009 22:15:00.831949  179598 writer.go:200] Marking Degraded due to: error running systemd-run --unit machine-config-daemon-update-rpmostree-via-container --collect --wait -- podman run --authfile /var/lib/kubelet/config.json --privileged --pid=host --net=host --rm -v /:/run/host quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:0daf5c4a35424410e88dde102022fc3581302bc8a98e09e2e4748502c59b3661 rpm-ostree ex deploy-from-self /run/host: Running as unit: machine-config-daemon-update-rpmostree-via-container.service
2022-10-09T22:15:00.831959313Z Finished with result: exit-code
2022-10-09T22:15:00.831959313Z Main processes terminated with: code=exited/status=125
2022-10-09T22:15:00.831959313Z Service runtime: 2min 52ms
2022-10-09T22:15:00.831959313Z CPU time consumed: 144ms
2022-10-09T22:15:00.831959313Z : exit status 125

Version-Release number of selected component (if applicable):

4.12

Steps to Reproduce:

upgrade cluster from 4.11.8 to 4.12.0-0.nightly-2022-10-05-053337  

Actual results:

upgrade is failed due to node is degraded, rpm-ostree update via container is failed

Expected results:

upgrade can be completed successfully

Additional info:

must-gather: https://gcsweb-qe-private-deck-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/qe-private-deck/logs/periodic-ci-openshift-openshift-tests-private-release-4.12-nightly-4.12-upgrade-from-stable-4.11-aws-ipi-proxy-p1/1579169944476585984/artifacts/aws-ipi-proxy-p1/gather-must-gather/artifacts/must-gather.tar

Other build logs of failed jobs

https://gcsweb-qe-private-deck-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/qe-private-deck/logs/periodic-ci-openshift-openshift-tests-private-release-4.12-nightly-4.12-upgrade-from-stable-4.11-aws-ipi-proxy-cco-manual-security-token-service-p1/1579200140067999744/build-log.txt

https://gcsweb-qe-private-deck-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/qe-private-deck/logs/periodic-ci-openshift-openshift-tests-private-release-4.12-nightly-4.12-upgrade-from-stable-4.11-azure-ipi-proxy-p1/1579094436883730432/build-log.txt

https://gcsweb-qe-private-deck-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/qe-private-deck/logs/periodic-ci-openshift-openshift-tests-private-release-4.12-nightly-4.12-upgrade-from-stable-4.11-azure-ipi-proxy-workers-rhcos-rhel8-p2/1578747158293647360/build-log.txt

Tracker issue for bootimage bump in 4.12. This issue should block issues which need a bootimage bump to fix.

The previous bump was OCPBUGS-1941.

This is a clone of issue OCPBUGS-3287. The following is the description of the original issue:

Description of problem:

Configure both IPv4 and IPv6 addresses in api/ingress in install-config.yaml, install the cluster using agent-based installer. The cluster provisioned has only IPv4 stack for API/Ingress

Version-Release number of selected component (if applicable):

4.12

How reproducible:

Always

Steps to Reproduce:

1. As description
2.
3.

Actual results:

The cluster provisioned has only IPv4 stack for API/Ingress

Expected results:

The cluster provisioned has both IPv4 and IPv6 for API/Ingress

Additional info:

 

Description of problem:

4.2 AWS boot images such as ami-01e7fdcb66157b224 include the old ignition.platform.id=ec2 kernel command line parameter. When launched against 4.12.0-rc.3, new machines fail with:

  1. The old user-data and old AMI successfully get to the machine-config-server request stage.
  2. The new instance will then request the full Ignition from /config/worker , and the machine-config server translates that to the old Ignition v2 spec format.
  3. The instance will lay down that Ignition-formatted content, and then try and reboot into the new state.
  4. Coming back up in the new state, the modern Afterburn comes up to try and figure out a node name for the kubelet, and this fails with unknown provider 'ec2'.

Version-Release number of selected component (if applicable):

coreos-assemblers used ignition.platform.id=ec2, but pivoted to =aws here. It's not clear when that made its way into new AWS boot images. Some time after 4.2 and before 4.6.

Afterburn dropped support for legacy command-line options like the ec2 slug in 5.0.0. But it's not clear when that shipped into RHCOS. The release controller points at this RHCOS diff, but that has afterburn-0-5.3.0-1 builds on both sides.

How reproducible:

100%, given a sufficiently old AMI and a sufficiently new OpenShift release target.

Steps to Reproduce:

  1. Install 4.12.0-rc.3 or similar new OpenShift on AWS in us-east-1.
  2. Create Ignition v2 user-data in a Secret in openshift-machine-api. I'm fuzzy on how to do that portion easily, since it's basically RFE-3001 backwards.
  3. Edit a compute MachineSet to set spec.template.spec.providerSpec.value.ami to id: ami-01e7fdcb66157b224 and also point it at your v2 user-data Secret.
  4. Possibly delete an existing Machine in that MachineSet, or raise replicas, or otherwise talk the MachineSet controller into provisioning a new Machine to pick up the reconfigured AMI.

Actual results:

The new Machine will get to Provisioned but fail to progress to Running. systemd journal logs will include unknown provider 'ec2' for Afterburn units.

Expected results:

Old boot-image AMIs can successfully update to 4.12.

Alternatively, we pin down the set of exposed boot images sufficiently that users with older clusters can audit for exposure and avoid the issue by updating to more modern boot images (although updating boot images is not trivial, see RFE-3001 and the Ignition spec 2 to 3 transition discussed in kcs#5514051.

This is a clone of issue OCPBUGS-7102. The following is the description of the original issue:

Description of problem:

https://github.com/openshift/operator-framework-olm/blob/7ec6b948a148171bd336750fed98818890136429/staging/operator-lifecycle-manager/pkg/controller/operators/olm/plugins/downstream_csv_namespace_labeler_plugin_test.go#L309

has a dependency on creation of a next-version release branch.

 

Version-Release number of selected component (if applicable):

4.13

How reproducible:

 

Steps to Reproduce:

1. clone operator-framework/operator-framework-olm
2. make unit/olm
3. deal with a really bumpy first-time kubebuilder/envtest install experience
4. profit

 

 

Actual results:

error

Expected results:

pass

Additional info: